Your browser doesn't support javascript.
loading
An ultra-high affinity synthetic nanobody blocks SARS-CoV-2 infection by locking Spike into an inactive conformation
Michael Schoof; Bryan Faust; Reuben A Saunders; Smriti Sangwan; Veronica V Rezelj; Nick Hoppe; Morgane Boone; Christian Billesboelle; Cristina Puchades; Caleigh M Azumaya; Huong T Kratochvil; Marcell Zimanyi; Ishan Deshpande; Jiahao Liang; Sasha Dickinson; Henry C Nguyen; Cynthia M Chio; Gregory E Merz; Michael C Thompson; Devan Diwanji; Kaitlin Schaefer; Aditya A Anand; Niv Dobzinski; Beth Shoshana Zha; Camille R. Simoneau; Kristoffer Leon; Kris M. White; Un Seng Chio; Meghna Gupta; Mingliang Jin; Fei Li; Yanxin Liu; Kaihua Zhang; David Bulkley; Ming Sun; Amber M Smith; Alexandrea N. Rizo; Frank Moss; Axel F. Brilot; Sergei Pourmal; Raphael Trenker; Thomas Pospiech; Sayan Gupta; Benjamin Barsi-Rhyne; Vladislav Belyy; Andrew W Barile-Hill; Silke Nock; Yuwei Liu; Nevan J. Krogan; Corie Y Ralston; Danielle L Swaney; Adolfo Garcia-Sastre; Melanie Ott; Marco Vignuzzi; - Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium; Peter Walter; Aashish Manglik.
Affiliation
  • Michael Schoof; UCSF
  • Bryan Faust; UCSF
  • Reuben A Saunders; UCSF
  • Smriti Sangwan; UCSF
  • Veronica V Rezelj; Institut Pasteur
  • Nick Hoppe; UCSF
  • Morgane Boone; UCSF
  • Christian Billesboelle; UCSF
  • Cristina Puchades; UCSF
  • Caleigh M Azumaya; UCSF
  • Huong T Kratochvil; UCSF
  • Marcell Zimanyi; UCSF
  • Ishan Deshpande; UCSF
  • Jiahao Liang; UCSF
  • Sasha Dickinson; UCSF
  • Henry C Nguyen; UCSF
  • Cynthia M Chio; UCSF
  • Gregory E Merz; UCSF
  • Michael C Thompson; UCSF
  • Devan Diwanji; UCSF
  • Kaitlin Schaefer; UCSF
  • Aditya A Anand; UCSF
  • Niv Dobzinski; UCSF
  • Beth Shoshana Zha; UCSF
  • Camille R. Simoneau; UCSF
  • Kristoffer Leon; UCSF
  • Kris M. White; Icahn School of Medicine at Mount Sinai
  • Un Seng Chio; UCSF
  • Meghna Gupta; UCSF
  • Mingliang Jin; UCSF
  • Fei Li; UCSF
  • Yanxin Liu; UCSF
  • Kaihua Zhang; UCSF
  • David Bulkley; UCSF
  • Ming Sun; UCSF
  • Amber M Smith; UCSF
  • Alexandrea N. Rizo; UCSF
  • Frank Moss; UCSF
  • Axel F. Brilot; Howard Hughes Medical Institute, University of California, San Francisco
  • Sergei Pourmal; UCSF
  • Raphael Trenker; UCSF
  • Thomas Pospiech; UCSF
  • Sayan Gupta; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory,
  • Benjamin Barsi-Rhyne; UCSF
  • Vladislav Belyy; UCSF
  • Andrew W Barile-Hill; Cytiva
  • Silke Nock; UCSF
  • Yuwei Liu; UCSF
  • Nevan J. Krogan; University of California San Francisco
  • Corie Y Ralston; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory,
  • Danielle L Swaney; UCSF
  • Adolfo Garcia-Sastre; Icahn School of Medicine at Mount Sinai
  • Melanie Ott; Gladstone Institutes/UCSF
  • Marco Vignuzzi; Institut Pasteur
  • - Quantitative Biosciences Institute (QBI) Coronavirus Research Group Structural Biology Consortium;
  • Peter Walter; UCSF/HHMI
  • Aashish Manglik; University of California, San Francisco
Preprint in English | bioRxiv | ID: ppbiorxiv-238469
ABSTRACT
Without an effective prophylactic solution, infections from SARS-CoV-2 continue to rise worldwide with devastating health and economic costs. SARS-CoV-2 gains entry into host cells via an interaction between its Spike protein and the host cell receptor angiotensin converting enzyme 2 (ACE2). Disruption of this interaction confers potent neutralization of viral entry, providing an avenue for vaccine design and for therapeutic antibodies. Here, we develop single-domain antibodies (nanobodies) that potently disrupt the interaction between the SARS-CoV-2 Spike and ACE2. By screening a yeast surface-displayed library of synthetic nanobody sequences, we identified a panel of nanobodies that bind to multiple epitopes on Spike and block ACE2 interaction via two distinct mechanisms. Cryogenic electron microscopy (cryo-EM) revealed that one exceptionally stable nanobody, Nb6, binds Spike in a fully inactive conformation with its receptor binding domains (RBDs) locked into their inaccessible down-state, incapable of binding ACE2. Affinity maturation and structure-guided design of multivalency yielded a trivalent nanobody, mNb6-tri, with femtomolar affinity for SARS-CoV-2 Spike and picomolar neutralization of SARS-CoV-2 infection. mNb6-tri retains stability and function after aerosolization, lyophilization, and heat treatment. These properties may enable aerosol-mediated delivery of this potent neutralizer directly to the airway epithelia, promising to yield a widely deployable, patient-friendly prophylactic and/or early infection therapeutic agent to stem the worst pandemic in a century.
License
cc_by_nc_nd
Full text: Available Collection: Preprints Database: bioRxiv Language: English Year: 2020 Document type: Preprint
Full text: Available Collection: Preprints Database: bioRxiv Language: English Year: 2020 Document type: Preprint
...