Your browser doesn't support javascript.
loading
Inferring MHC interacting SARS-CoV-2 epitopes recognized by TCRs towards designing T cell-based vaccines
Amir Hossein Mohseni; Sedigheh Taghinezhad-S; Bing Su; Feng Wang.
Affiliation
  • Amir Hossein Mohseni; Shanghai Jiao Tong University
  • Sedigheh Taghinezhad-S; Shanghai Jiao Tong University
  • Bing Su; Shanghai Jiao Tong University
  • Feng Wang; Shanghai Jiao Tong University
Preprint in English | bioRxiv | ID: ppbiorxiv-294413
ABSTRACT
The coronavirus disease 2019 (COVID-19) is triggered by severe acute respiratory syndrome mediated by coronavirus 2 (SARS-CoV-2) infection and was declared by WHO as a major international public health concern. While worldwide efforts are being advanced towards vaccine development, the structural modeling of TCR-pMHC (T Cell Receptor-peptide-bound Major Histocompatibility Complex) regarding SARS-CoV-2 epitopes and the design of effective T cell vaccine based on these antigens are still unresolved. Here, we present both pMHC and TCR-pMHC interfaces to infer peptide epitopes of the SARS-CoV-2 proteins. Accordingly, significant TCR-pMHC templates (Z-value cutoff > 4) along with interatomic interactions within the SARS-CoV-2-derived hit peptides were clarified. Also, we applied the structural analysis of the hit peptides from different coronaviruses to highlight a feature of evolution in SARS-CoV-2, SARS-CoV, bat-CoV, and MERS-CoV. Peptide-protein flexible docking between each of the hit peptides and their corresponding MHC molecules were performed, and a multi-hit peptides vaccine against the S and N glycoprotein of SARS-CoV-2 was designed. Filtering pipelines including antigenicity, and also physiochemical properties of designed vaccine were then evaluated by different immunoinformatics tools. Finally, vaccine-structure modeling and immune simulation of the desired vaccine were performed aiming to create robust T cell immune responses. We anticipate that our design based on the T cell antigen epitopes and the frame of the immunoinformatics analysis could serve as valuable supports for the development of COVID-19 vaccine.
License
cc_no
Full text: Available Collection: Preprints Database: bioRxiv Type of study: Experimental_studies Language: English Year: 2020 Document type: Preprint
Full text: Available Collection: Preprints Database: bioRxiv Type of study: Experimental_studies Language: English Year: 2020 Document type: Preprint
...