This article is a Preprint
Preprints are preliminary research reports that have not been certified by peer review. They should not be relied on to guide clinical practice or health-related behavior and should not be reported in news media as established information.
Preprints posted online allow authors to receive rapid feedback and the entire scientific community can appraise the work for themselves and respond appropriately. Those comments are posted alongside the preprints for anyone to read them and serve as a post publication assessment.
Chitinase 3-like-1 is a Therapeutic Target That Mediates the Effects of Aging in COVID-19
Preprint
in En
| PREPRINT-BIORXIV
| ID: ppbiorxiv-425478
Journal article
A scientific journal published article is available and is probably based on this preprint. It has been identified through a machine matching algorithm, human confirmation is still pending.
See journal article
A scientific journal published article is available and is probably based on this preprint. It has been identified through a machine matching algorithm, human confirmation is still pending.
See journal article
ABSTRACT
COVID-19 is caused by the SARS-CoV-2 (SC2) virus and is more prevalent and severe in the elderly and patients with comorbid diseases (CM). Because chitinase 3-like-1 (CHI3L1) is induced during aging and CM, the relationships between CHI3L1 and SC2 were investigated. Here we demonstrate that CHI3L1 is a potent stimulator of the SC2 receptor ACE2 and viral spike protein priming proteases (SPP), that ACE2 and SPP are induced during aging and that anti-CHI3L1, kasugamycin and inhibitors of phosphorylation, abrogate these ACE2- and SPP-inductive events. Human studies also demonstrated that the levels of circulating CHI3L1 are increased in the elderly and patients with CM where they correlate with COVID-19 severity. These studies demonstrate that CHI3L1 is a potent stimulator of ACE2 and SPP; that this induction is a major mechanism contributing to the effects of aging during SC2 infection and that CHI3L1 coopts the CHI3L1 axis to augment SC2 infection. CHI3L1 plays a critical role in the pathogenesis of and is an attractive therapeutic target in COVID-19.
cc_no
Full text:
1
Collection:
09-preprints
Database:
PREPRINT-BIORXIV
Type of study:
Experimental_studies
/
Prognostic_studies
Language:
En
Year:
2021
Document type:
Preprint