Your browser doesn't support javascript.
loading
Energetic and structural features of SARS-CoV-2 N-protein co-assemblies with nucleic acids
Huaying Zhao; Di Wu; Ai Nguyen; Yan Li; Regina Adão; Eugene Valkov; George H Patterson; Grzegorz Piszczek; Peter Schuck.
Affiliation
  • Huaying Zhao; National Institutes of Health
  • Di Wu; National Institutes of Health
  • Ai Nguyen; National Institutes of Health
  • Yan Li; National Institutes of Health
  • Regina Adão; National Institutes of Health
  • Eugene Valkov; National Institutes of Health
  • George H Patterson; National Institutes of Health
  • Grzegorz Piszczek; National Institutes of Health
  • Peter Schuck; National Institutes of Health
Preprint in En | PREPRINT-BIORXIV | ID: ppbiorxiv-430344
Journal article
A scientific journal published article is available and is probably based on this preprint. It has been identified through a machine matching algorithm, human confirmation is still pending.
See journal article
ABSTRACT
Nucleocapsid (N) protein of the SARS-CoV-2 virus packages the viral genome into well-defined ribonucleoprotein particles, but the molecular pathway is still unclear. N-protein is dimeric and consists of two folded domains with nucleic acid (NA) binding sites, surrounded by intrinsically disordered regions that promote liquid-liquid phase separation. Here we use biophysical tools to study N-protein interactions with oligonucleotides of different length, examining the size, composition, secondary structure, and energetics of the resulting states. We observe formation of supramolecular clusters or nuclei preceding growth into phase-separated droplets. Short hexanucleotide NA forms compact 22 N-protein/NA complexes with reduced disorder. Longer oligonucleotides expose additional N-protein interactions and multi-valent protein-NA interactions, which generate higher-order mixed oligomers and simultaneously promote growth of droplets. Phase separation is accompanied by a significant increase in protein secondary structure, different from that caused by initial NA binding, which may contribute to the assembly of ribonucleoprotein particles within molecular condensates.
License
cc0
Full text: 1 Collection: 09-preprints Database: PREPRINT-BIORXIV Language: En Year: 2021 Document type: Preprint
Full text: 1 Collection: 09-preprints Database: PREPRINT-BIORXIV Language: En Year: 2021 Document type: Preprint