Your browser doesn't support javascript.
loading
Modeling the Epidemic Dynamics and Control of COVID-19 Outbreak in China
Shilei Zhao; Hua Chen.
Affiliation
  • Shilei Zhao; Beijing Institute of Genomics, Chinese Academy of Sciences
  • Hua Chen; Beijing Institute of Genomics, Chinese Academy of Sciences
Preprint in English | medRxiv | ID: ppmedrxiv-20028639
ABSTRACT
BackgroundThe coronavirus disease 2019 (COVID-19) is rapidly spreading in China and more than 30 countries over last two months. COVID-19 has multiple characteristics distinct from other infectious diseases, including high infectivity during incubation, time delay between real dynamics and daily observed number of confirmed cases, and the intervention effects of implemented quarantine and control measures. MethodWe develop a Susceptible, Un-quanrantined infected, Quarantined infected, Confirmed infected (SUQC) model to characterize the dynamics of COVID-19 and explicitly parameterize the intervention effects of control measures, which is more suitable for analysis than other existing epidemic models. ResultsThe SUQC model is applied to the daily released data of the confirmed infections to analyze the outbreak of COVID-19 in Wuhan, Hubei (excluding Wuhan), China (excluding Hubei) and four first-tier cities of China. We found that, before January 30th, 2020, all these regions except Beijing had a reproductive number R > 1, and after January 30th, all regions had a reproductive number R < 1, indicating that the quarantine and control measures are effective in preventing the spread of COVID-19. The confirmation rate of Wuhan estimated by our model is 0.0643, substantially lower than that of Hubei excluding Wuhan (0.1914), and that of China excluding Hubei (0.2189), but jumps to 0.3229 after Feb 12th when clinical evidence was adopted in new diagnosis guidelines. The number of un-quarantined infected cases in Wuhan on February 12, 2020 is estimated to be 3,509 and declines to 334 on February 21th, 2020. After fitting the model with data as of February 21th, 2020, we predict that the end time of COVID-19 in Wuhan and Hubei is around late March, around mid March for China excluding Hubei, and before early March 2020 for the four tier-one cities. A total of 80,511 individuals are estimated to be infected in China, among which 49,510 are from Wuhan, 17,679 from Hubei (excluding Wuhan), and the rest 13,322 from other regions of China (excluding Hubei). Note that the estimates are from a deterministic ODE model and should be interpreted with some uncertainty. ConclusionWe suggest that rigorous quarantine and control measures should be kept before early March in Beijing, Shanghai, Guangzhou and Shenzhen, and before late March in Hubei. The model can also be useful to predict the trend of epidemic and provide quantitative guide for other countries in a high risk of outbreak, such as South Korea, Japan, Italy and Iran.
License
cc_by_nc_nd
Full text: Available Collection: Preprints Database: medRxiv Type of study: Observational study / Prognostic study Language: English Year: 2020 Document type: Preprint
Full text: Available Collection: Preprints Database: medRxiv Type of study: Observational study / Prognostic study Language: English Year: 2020 Document type: Preprint
...