Your browser doesn't support javascript.
loading
Immune phenotyping based on neutrophil-to-lymphocyte ratio and IgG predicts disease severity and outcome for patients with COVID-19
Bicheng Zhang; Xiaoyang Zhou; Chengliang Zhu; Fan Feng; Yanru Qiu; Jia Feng; Qingzhu Jia; Qibin Song; Bo Zhu; Jun Wang Sr..
Affiliation
  • Bicheng Zhang; Cancer Center, Renmin Hospital of Wuhan University
  • Xiaoyang Zhou; Cardiac Care Unit, Eastern Campus, Renmin Hospital of Wuhan University
  • Chengliang Zhu; Department of Clinical Laboratory, Renmin Hospital of Wuhan University
  • Fan Feng; Cancer Center, Renmin Hospital of Wuhan University
  • Yanru Qiu; Cancer Center, Renmin Hospital of Wuhan University
  • Jia Feng; Cancer Center, Renmin Hospital of Wuhan University
  • Qingzhu Jia; Institute of Cancer, Xinqiao Hospital, Army Medical University
  • Qibin Song; Cancer Center, Renmin Hospital of Wuhan University,
  • Bo Zhu; Institute of Cancer, Xinqiao Hospital, Army Medical University
  • Jun Wang Sr.; The First Affiliated Hospital of Shandong First Medical University
Preprint in En | PREPRINT-MEDRXIV | ID: ppmedrxiv-20035048
ABSTRACT
BackgroundA recently emerging respiratory disease named coronavirus disease 2019 (COVID-19) has quickly spread across the world. This disease is initiated by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and uncontrolled cytokine storm, but it remains unknown as to whether a robust antibody response is related to clinical deterioration and poor outcome in laboratory-confirmed COVID-19 patients. MethodsAnti-SARS-CoV-2 IgG and IgM antibodies were determined by chemiluminescence analysis (CLIA) in COVID-19 patients from a single center in Wuhan. Median IgG and IgM levels in acute and convalescent-phase sera (within 35 days) for all included patients were calculated and compared among severe and nonsevere patients. Immune response phenotyping based on late IgG levels and neutrophil-to-lymphocyte ratio (NLR) was characterized to stratify patients with different disease severities and outcome. Laboratory parameters in patients with different immune response phenotypes and disease severities were analyzed. FindingsA total of 222 patients were included in this study. IgG was first detected on day 4 of illness, and its peak levels occurred in the fourth week. Severe cases were more frequently found in patients with high IgG levels, compared to those who with low IgG levels (51.8% versus 32.3%; p=0.008). Severity rates for patients with NLRhiIgGhi, NLRhiIgGlo, NLRloIgGhi, and NLRloIgGlo phenotype was 72.3%, 48.5%, 33.3%, and 15.6%, respectively (p<0.0001). Furthermore, severe patients with NLRhiIgGhi, NLRhiIgGlo had higher proinflammatory cytokines levels including IL-2, IL-6 and IL-10, and decreased CD4+ T cell count compared to those with NLRloIgGlo phenotype (p<0.05). Recovery rate for severe patients with NLRhiIgGhi, NLRhiIgGlo, NLRloIgGhi, and NLRloIgGlo phenotype was 58.8% (20/34), 68.8% (11/16), 80.0% (4/5), and 100% (12/12), respectively (p=0.0592). Dead cases only occurred in NLRhiIgGhi and NLRhiIgGlo phenotypes. InterpretationCOVID-19 severity is associated with increased IgG response, and an immune response phenotyping based on late IgG response and NLR could act as a simple complementary tool to discriminate between severe and nonsevere COVID-19 patients, and further predict their clinical outcome. Research in contextO_ST_ABSEvidence before this studyC_ST_ABSFollowing SARS-CoV-2 infection, a high viral load and overexuberant host immune response involving innate and acquired immunity, simultaneously contributes to the pathogenesis of COVID-19 and organ injury. Through searching PubMed and the China National knowledge infrastructure databases up to March 12, 2020, no published article focusing on anti-SARS-CoV-2 IgG-mediated immune response was identified. Added value of this studyWe evaluated antibody response within 35 days after symptom onset in laboratory-confirmed case with COVID-19 as one component of an overall exaggerated immune activation in severe SARS-CoV-2 infection, and developed an immune phenotyping based on late IgG response and NLR that could help determine disease severity and clinical outcome of COVID-19 patients. Severe cases were more frequently found in patients with high IgG levels, compared to those who with low IgG levels (51.8% versus 32.3%). Severity rates for patients with NLRhiIgGhi, NLRhiIgGlo, NLRloIgGhi, and NLRloIgGlo phenotype was 72.3%, 48.5%, 33.3%, and 15.6%, respectively. Furthermore, severe patients with NLRhiIgGhi, NLRhiIgGlo had higher proinflammatory cytokines levels including IL-2, IL-6 and IL-10, and decreased CD4+ T cell count compared to those with NLRloIgGlo phenotype. Recovery rate for severe patients with NLRhiIgGhi, NLRhiIgGlo, NLRloIgGhi, and NLRloIgGlo phenotype was 58.8% (20/34), 68.8% (11/16), 80.0% (4/5), and 100% (12/12), respectively. Implications of all the available evidenceCOVID-19 severity is associated with a high viral load and overexuberant IgG response. We developed an immune response phenotyping based on NLR and IgG that could act as a simple complementary tool to discriminate between severe and nonsevere COVID-19 patients and would be helpful in guiding clinical decision.
License
cc_no
Full text: 1 Collection: 09-preprints Database: PREPRINT-MEDRXIV Type of study: Experimental_studies / Prognostic_studies / Review Language: En Year: 2020 Document type: Preprint
Full text: 1 Collection: 09-preprints Database: PREPRINT-MEDRXIV Type of study: Experimental_studies / Prognostic_studies / Review Language: En Year: 2020 Document type: Preprint