This article is a Preprint
Preprints are preliminary research reports that have not been certified by peer review. They should not be relied on to guide clinical practice or health-related behavior and should not be reported in news media as established information.
Preprints posted online allow authors to receive rapid feedback and the entire scientific community can appraise the work for themselves and respond appropriately. Those comments are posted alongside the preprints for anyone to read them and serve as a post publication assessment.
Rapid COVID-19 Diagnosis Using Deep Learning of the Computerized Tomography Scans
Preprint
in En
| PREPRINT-MEDRXIV
| ID: ppmedrxiv-20248582
Journal article
A scientific journal published article is available and is probably based on this preprint. It has been identified through a machine matching algorithm, human confirmation is still pending.
See journal article
A scientific journal published article is available and is probably based on this preprint. It has been identified through a machine matching algorithm, human confirmation is still pending.
See journal article
ABSTRACT
Several studies suggest that COVID-19 may be accompanied by symptoms such as a dry cough, muscle aches, sore throat, and mild to moderate respiratory illness. The symptoms of this disease indicate the fact that COVID-19 causes noticeable negative effects on the lungs. Therefore, considering the health status of the lungs using X-rays and CT scans of the chest can significantly help diagnose COVID-19 infection. Due to the fact that most of the methods that have been proposed to COVID-19 diagnose deal with the lengthy testing time and also might give more false positive and false negative results, this paper aims to review and implement artificial intelligence (AI) image-based diagnosis methods in order to detect coronavirus infection with zero or near to zero false positives and false negatives rates. Besides the already existing AI image-based medical diagnosis method for the other well-known disease, this study aims on finding the most accurate COVID-19 detection method among AI methods such as machine learning (ML) and artificial neural network (ANN), ensemble learning (EL) methods.
cc_by
Full text:
1
Collection:
09-preprints
Database:
PREPRINT-MEDRXIV
Language:
En
Year:
2020
Document type:
Preprint