This article is a Preprint
Preprints are preliminary research reports that have not been certified by peer review. They should not be relied on to guide clinical practice or health-related behavior and should not be reported in news media as established information.
Preprints posted online allow authors to receive rapid feedback and the entire scientific community can appraise the work for themselves and respond appropriately. Those comments are posted alongside the preprints for anyone to read them and serve as a post publication assessment.
Evaluation of machine learning for predicting COVID-19 outcomes from a national electronic medical records database
Preprint
in En
| PREPRINT-MEDRXIV
| ID: ppmedrxiv-22273835
ABSTRACT
ObjectiveWhen novel diseases such as COVID-19 emerge, predictors of clinical outcomes might be unknown. Using data from electronic medical records (EMR) allows evaluation of potential predictors without selecting specific features a priori for a model. We evaluated different machine learning models for predicting outcomes among COVID-19 inpatients using raw EMR data. Materials and MethodsIn Premier Healthcare Data Special Release COVID-19 Edition (PHD-SR COVID-19, release date March, 24 2021), we included patients admitted with COVID-19 during February 2020 through April 2021 and built time-ordered medical histories. Setting the prediction horizon at 24 hours into the first COVID-19 inpatient visit, we aimed to predict intensive care unit (ICU) admission, hyperinflammatory syndrome (HS), and death. We evaluated the following models L2-penalized logistic regression, random forest, gradient boosting classifier, deep averaging network, and recurrent neural network with a long short-term memory cell. ResultsThere were 57,355 COVID-19 patients identified in PHD-SR COVID-19. ICU admission was the easiest outcome to predict (best AUC=79%), and HS was the hardest to predict (best AUC=70%). Models performed similarly within each outcome. DiscussionAlthough the models learned to attend to meaningful clinical information, they performed similarly, suggesting performance limitations are inherent to the data. ConclusionPredictive models using raw EMR data are promising because they can use many observations and encompass a large feature space; however, traditional and deep learning models may perform similarly when few features are available at the individual patient level.
cc0
Full text:
1
Collection:
09-preprints
Database:
PREPRINT-MEDRXIV
Type of study:
Experimental_studies
/
Observational_studies
/
Prognostic_studies
/
Rct
Language:
En
Year:
2022
Document type:
Preprint