Your browser doesn't support javascript.
loading
P70S6K and Elf4E Dual Inhibition Is Essential to Control Bladder Tumor Growth and Progression in Orthotopic Mouse Non-muscle Invasive Bladder Tumor Model
Article in English | WPRIM (Western Pacific) | ID: wpr-138276
Responsible library: WPRO
ABSTRACT
We investigated how the dual inhibition of the molecular mechanism of the mammalian target of the rapamycin (mTOR) downstreams, P70S6 kinase (P70S6K) and eukaryotic initiation factor 4E (eIF4E), can lead to a suppression of the proliferation and progression of urothelial carcinoma (UC) in an orthotopic mouse non-muscle invasive bladder tumor (NMIBT) model. A KU-7-luc cell intravesically instilled orthotopic mouse NMIBC model was monitored using bioluminescence imaging (BLI) in vivo by interfering with different molecular components using rapamycin and siRNA technology. We then analyzed the effects on molecular activation status, cell growth, proliferation, and progression. A high concentration of rapamycin (10 microM) blocked both P70S6K and elF4E phosphorylation and inhibited cell proliferation in the KU-7-luc cells. It also reduced cell viability and proliferation more than the transfection of siRNA against p70S6K or elF4E. The groups with dual p70S6K and elF4E siRNA, and rapamycin reduced tumor volume and lamina propria invasion more than the groups with p70S6K or elF4E siRNA instillation, although all groups reduced photon density compared to the control. These findings suggest that both the mTOR pathway downstream of eIF4E and p70S6K can be successfully inhibited by high dose rapamycin only, and p70S6K and Elf4E dual inhibition is essential to control bladder tumor growth and progression.
Subject(s)

Full text: Available Health context: Sustainable Health Agenda for the Americas Health problem: Goal 9: Noncommunicable diseases and mental health Database: WPRIM (Western Pacific) Main subject: Phosphorylation / Urinary Bladder Neoplasms / Signal Transduction / Cell Line / Cell Survival / Disease Progression / Urothelium / Sirolimus / Ribosomal Protein S6 Kinases, 70-kDa / Eukaryotic Initiation Factor-4E Type of study: Prognostic study Limits: Animals Language: English Journal: Journal of Korean Medical Science Year: 2015 Document type: Article
Full text: Available Health context: Sustainable Health Agenda for the Americas Health problem: Goal 9: Noncommunicable diseases and mental health Database: WPRIM (Western Pacific) Main subject: Phosphorylation / Urinary Bladder Neoplasms / Signal Transduction / Cell Line / Cell Survival / Disease Progression / Urothelium / Sirolimus / Ribosomal Protein S6 Kinases, 70-kDa / Eukaryotic Initiation Factor-4E Type of study: Prognostic study Limits: Animals Language: English Journal: Journal of Korean Medical Science Year: 2015 Document type: Article
...