A new Bayesian reconstruction algorithm for PET images based on correction of the detected sinogram data / 南方医科大学学报
Journal of Southern Medical University
; (12): 325-328, 2007.
Article
in Zh
| WPRIM
| ID: wpr-298174
Responsible library:
WPRO
ABSTRACT
<p><b>OBJECTIVE</b>To improve Bayesian reconstruction of positron-emission tomography (PET) images by devising a novel coupled feedback (CF) iterative model.</p><p><b>METHODS</b>The CF iterative algorithm was applied to update the noisy detected emission sinogram data using the latest reconstructed image in the iterative process of PET reconstruction. The relevant operations included linear filtering, wiener filtering, and projection of the reconstructed images. The sinogram data used in the study was obtained from simulated phantom data.</p><p><b>RESULTS</b>The experiments and corresponding visional and quantitative comparisons showed that the new method had better performance than the traditional Bayesian reconstruction of PET images for improvement of the PET images.</p><p><b>CONCLUSIONS</b>The proposed sinogram-correcting method allows improvement on the original measurement data, and is applicable for PET image reconstruction or other reconstruction tasks with high noise level.</p>
Full text:
1
Database:
WPRIM
Main subject:
Algorithms
/
Image Processing, Computer-Assisted
/
Bayes Theorem
/
Positron-Emission Tomography
/
Methods
/
Models, Theoretical
Type of study:
Prognostic_studies
Limits:
Humans
Language:
Zh
Journal:
Journal of Southern Medical University
Year:
2007
Document type:
Article