Your browser doesn't support javascript.
loading
Impact of multi-drug transporters on regulation of concentration of lamotrigine in hippocampal extracellular fluid in rat after pilocarpine-induced seizures / 中华神经科杂志
Chinese Journal of Neurology ; (12): 551-554, 2009.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-392989
Responsible library: WPRO
ABSTRACT
Objective To investigate the impact of multi-drug transporters including P-glycoprotein (PGP) and multi-drug resistance associated protein (MRP) on concentration of lamotrigine in the extracellular fluid in hippocampus of epilepsy rat models induced by pilocarpine, and to deduce the multi-drug resistance mechanisms in refractory epilepsy. Methods The epilepsy rat models were established by repeated administration (by ip) of pilocarpine. A microdialysis probe was placed into the hippocampus of the epileptic rats and dialysate was collected at five time-points from 30--150 minutes after systemic injections of lamotrigine (10 mg/kg). The concentration of lamotrigine in the extracellular fluid in the hippocampus was determined by high-performance liquid chromatography (HPLC). Then PGP inhibitor verapamil and MRP inhibitor probenecid was added individually through microdialysis probe and the concentration of lamotrigine was detected again. Results Compared with control group (0. 41 ± 0. 10 in 60 minutes, 0. 50 ±0.04 in 90 minutes, 0. 39 ±0. 09 in 120 minutes and 0. 30±0.06 in 150 minutes), verapamil significantly increased the concentration of lamotrigine in extracellular fluid of the hippocampus 60--150 minutes (0. 65 ±0. 11, 0. 84 ± 0. 09, 0. 70± 0. 09 and 0. 58 ± 0. 08 respectively) after injection (F value were 5.01, 8.61, 10. 23 and 7.89, all P < 0. 05) and probenecid also enhanced the concentration of lamotrigine 90--150 minutes (0. 75 ± 0. 09, 0. 58±0. 10 and 0. 49±0. 07) after injection (F = 6. 58, 4. 56, 4. 75, all P < 0. 05). Conclusions Penetration of lamotrigine through blood-brain barrier in pilocarpine induced epilepsy rats is restricted by PGP and MRP, resulting in decreased concentration of lamotrigine in the extracellular fluid of the hippocampus. Therefore, increasing expression of PGP and MRP in brains of epilepsy patients might be an important mechanism involved in multi-drug resistance in refractory epilepsy.

Full text: Available Database: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Neurology Year: 2009 Document type: Article
Full text: Available Database: WPRIM (Western Pacific) Language: Chinese Journal: Chinese Journal of Neurology Year: 2009 Document type: Article
...