Your browser doesn't support javascript.
loading
Establishment an aggregation-induced emission vesicle material based on supramolecular host-guest chemical assembly for siRNA delivery and study on its toxicity to tumor cells / 国际生物医学工程杂志
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-989340
Responsible library: WPRO
ABSTRACT

Objective:

To establish an aggregation-induced emission vesicle material based on supramolecular host-guest chemical assembly (AIE-HG-Vesicle) for siRNA delivery and fluorescence imaging, and to explore its uptake effect by tumor cells and siRNA-based cell killing effect.

Methods:

By synthesizing β-cyclodextrin modified with polyethyleneimine dendrimer (H-β-CD-dendrimer) as a host compound and a Bola type adamantane containing tetrastyrene AIE group (G-Ada-AIE) as a guest compound, the nanovesicle material was prepared by a supramolecular host-guest self-assembly process for loading siRNA. The morphology and size of the materials were tested by transmission electron microscopy and the dynamic light scattering method. The aggregation-induced luminescence properties of the materials were investigated by fluorescence spectrophotometry. The loading effect of the material on siRNA was investigated by gel retardation experiments. The delivery effect of siRNA-loaded AIE-HG-Vesicle vesicles in tumor cells was observed by a confocal laser scanning microscope. The killing effect of siRNA-loaded AIE-HG-Vesicle vesicles on tumor cells was tested by an MTT assay.

Results:

The prepared host-guest compounds can be assembled into vesicles with a size of about 100 nm and wall thickness of 9 nm in solution, and the positively charged vesicles on the surface can efficiently load siRNA. The siRNA-loaded AIE-HG-Vesicle vesicles can deliver siRNA into HeLa tumor cells and can be observed through aggregation-induced luminescence. The siRNA-loaded vesicles have an obvious killing effect on HeLa tumor cells.

Conclusions:

A vesicle material with aggregation-induced luminescence properties was prepared by a method based on supramolecular host-guest chemical assembly, which can be used to deliver siRNA. The material has fluorescence imaging and siRNA-based tumor cytotoxic effects and is expected to be applied to tumor treatment in vivo.

Full text: Available Database: WPRIM (Western Pacific) Language: Chinese Journal: International Journal of Biomedical Engineering Year: 2023 Document type: Article
Full text: Available Database: WPRIM (Western Pacific) Language: Chinese Journal: International Journal of Biomedical Engineering Year: 2023 Document type: Article
...