Your browser doesn't support javascript.
loading
Data-driven decision making for the screening of cognitive impairment in primary care: a machine learning approach using data from the ELSA-Brasil study
Szlejf, C.; Batista, A.F.M.; Bertola, L.; Lotufo, P.A.; Benseãor, I.M.; Chiavegatto Filho, A.D.P.; Suemoto, C.K..
Afiliación
  • Szlejf, C.; Hospital Universitário, Universidade de São Paulo. Centro de Pesquisa Clínica e Epidemiológica. São Paulo. BR
  • Batista, A.F.M.; Universidade de São Paulo. Faculdade de Saúde Pública. Departmento de Epidemiologia. São Paulo. BR
  • Bertola, L.; Hospital Universitário, Universidade de São Paulo. Centro de Pesquisa Clínica e Epidemiológica. São Paulo. BR
  • Lotufo, P.A.; Hospital Universitário, Universidade de São Paulo. Centro de Pesquisa Clínica e Epidemiológica. São Paulo. BR
  • Benseãor, I.M.; Hospital Universitário, Universidade de São Paulo. Centro de Pesquisa Clínica e Epidemiológica. São Paulo. BR
  • Chiavegatto Filho, A.D.P.; Universidade de São Paulo. Faculdade de Saúde Pública. Departmento de Epidemiologia. São Paulo. BR
  • Suemoto, C.K.; Hospital Universitário, Universidade de São Paulo. Centro de Pesquisa Clínica e Epidemiológica. São Paulo. BR
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;56: e12475, 2023. tab, graf
Article en En | LILACS-Express | LILACS | ID: biblio-1420748
Biblioteca responsable: BR1.1
ABSTRACT
The systematic assessment of cognitive performance of older people without cognitive complaints is controversial and unfeasible. Identifying individuals at higher risk of cognitive impairment could optimize resource allocation. We aimed to develop and test machine learning models to predict cognitive impairment using variables obtainable in primary care settings. In this cross-sectional study, we included 8,291 participants of the baseline assessment of the ELSA-Brasil study, who were aged between 50 and 74 years and were free of dementia. Cognitive performance was assessed with a neuropsychological battery and cognitive impairment was defined as global cognitive z-score below 2 standard deviations. Variables used as input to the prediction models included demographics, social determinants, clinical conditions, family history, lifestyle, and laboratory tests. We developed machine learning models using logistic regression, neural networks, and gradient boosted trees. Participants' mean age was 58.3±6.2 years, 55% were female. Cognitive impairment was present in 328 individuals (4%). Machine learning algorithms presented fair to good discrimination (areas under the ROC curve between 0.801 and 0.873). Extreme Gradient Boosting presented the highest discrimination, high specificity (97%), and negative predictive value (97%). Seventy-six percent of the individuals with cognitive impairment were included among the highest ranked individuals by this algorithm. In conclusion, we developed and tested a machine learning model to predict cognitive impairment based on primary care data that presented good discrimination and high specificity. These characteristics could support the detection of patients who would not benefit from cognitive assessment, facilitating the allocation of human and economic resources.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: LILACS Tipo de estudio: Diagnostic_studies / Observational_studies / Prognostic_studies / Risk_factors_studies / Screening_studies Aspecto: Determinantes_sociais_saude País/Región como asunto: America do sul / Brasil Idioma: En Revista: Braz. j. med. biol. res / Rev. bras. pesqui. méd. biol Asunto de la revista: BIOLOGIA / MEDICINA Año: 2023 Tipo del documento: Article / Project document País de afiliación: Brasil Pais de publicación: Brasil

Texto completo: 1 Colección: 01-internacional Base de datos: LILACS Tipo de estudio: Diagnostic_studies / Observational_studies / Prognostic_studies / Risk_factors_studies / Screening_studies Aspecto: Determinantes_sociais_saude País/Región como asunto: America do sul / Brasil Idioma: En Revista: Braz. j. med. biol. res / Rev. bras. pesqui. méd. biol Asunto de la revista: BIOLOGIA / MEDICINA Año: 2023 Tipo del documento: Article / Project document País de afiliación: Brasil Pais de publicación: Brasil