Atomic Force Microscopy and Wettability Study of Oxidized Patterns at the Surface of Polystyrene.
J Colloid Interface Sci
; 220(1): 163-169, 1999 Dec 01.
Article
en En
| MEDLINE
| ID: mdl-10550254
The surface properties of patterned surfaces made by a combination of photolithography and oxygen plasma treatment of polystyrene (PS) were investigated. PS and plasma-treated PS (PSox) were first characterized using X-ray photoelectron spectroscopy and the study of wetting dynamics (Wilhelmy plate method) in water and in solutions of different pH. The results indicated that the PSox surface may be viewed as covered with a polyelectrolyte-like gel, which swells depending on pH. It was then shown, using atomic force microscopy (AFM), that the adhesion force measured on PS with a silicon tip in water was higher compared with that measured on PSox. This feature allowed imaging of the oxidation patterns using the adhesion mapping mode. The origin of the pulloff force contrast, which could not be explained by combining Johnson-Kendall-Roberts theory and thermodynamic considerations, was attributed to repulsion between the tip and hydrated polymer chains present on the oxidized surface. Imaging was also performed in the lateral force mode, a higher friction being recorded on PS than on PSox. Copyright 1999 Academic Press.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
J Colloid Interface Sci
Año:
1999
Tipo del documento:
Article
País de afiliación:
Bélgica
Pais de publicación:
Estados Unidos