Validating clustering for gene expression data.
Bioinformatics
; 17(4): 309-18, 2001 Apr.
Article
en En
| MEDLINE
| ID: mdl-11301299
MOTIVATION: Many clustering algorithms have been proposed for the analysis of gene expression data, but little guidance is available to help choose among them. We provide a systematic framework for assessing the results of clustering algorithms. Clustering algorithms attempt to partition the genes into groups exhibiting similar patterns of variation in expression level. Our methodology is to apply a clustering algorithm to the data from all but one experimental condition. The remaining condition is used to assess the predictive power of the resulting clusters-meaningful clusters should exhibit less variation in the remaining condition than clusters formed by chance. RESULTS: We successfully applied our methodology to compare six clustering algorithms on four gene expression data sets. We found our quantitative measures of cluster quality to be positively correlated with external standards of cluster quality.
Buscar en Google
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Algoritmos
/
Validación de Programas de Computación
/
Expresión Génica
/
Bases de Datos Factuales
Límite:
Animals
/
Female
/
Humans
Idioma:
En
Revista:
Bioinformatics
Asunto de la revista:
INFORMATICA MEDICA
Año:
2001
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Reino Unido