Structural requirements for conserved arginine of parathyroid hormone.
Biochemistry
; 40(30): 8955-61, 2001 Jul 31.
Article
en En
| MEDLINE
| ID: mdl-11467957
Arg-20 is one of two residues conserved in all peptides known to activate the parathyroid hormone (PTH) receptor. Previous studies have failed to find any naturally encoded analogues of residue 20 that had any adenylyl cyclase (AC) stimulating activity. In this work we have studied substitutions of Arg-20 with nonencoded amino acids and conformationally constrained analogues with side chains mimicking that of Arg. No analogue had more than 20% of the AC-stimulating ability of the natural Arg-20-bearing peptide. In descending order of activity, the most active analogues had (S)-4-piperidyl-(N-amidino)glycine (PipGly), norleucine (Nle), citrulline (Cit), or ornithine (Orn) at residue 20. Analogues with Arg-20 substituted with L-4-piperidyl-(N-amidino)alanine, Lys, Glu, Ala, Gln, (S)-2-amino-4-[(2-amino)pyrimidinyl]butanoic acid, or L-(4-guanidino)phenylalanine had very low or negligible activity. Low or negligible activities of Lys or Orn analogues suggested ionic interactions play a minor role in the Arg interaction with the receptor. The conformational constraints imposed by the PipGly ring had a negative effect on its ability to substitute for Arg. The side-chain H-bonding potential of the Cit ureimido group was likely an important factor in its mimicry of Arg. The increase in amphiphilicity, as demonstrated by its greater high-performance liquid chromatographic retention, and increased alpha-helix, as shown by circular dichroic spectroscopy, likely contributed to the activity of the Nle-20 analogue. The data demonstrated that specific H-bonding, hydrophobicity of the side chain, stabilization of alpha-helix, and possibly specific cation positioning were all important in the interaction of Arg-20 with receptor groups.
Buscar en Google
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Hormona Paratiroidea
/
Fragmentos de Péptidos
/
Arginina
/
Secuencia Conservada
Límite:
Animals
/
Humans
Idioma:
En
Revista:
Biochemistry
Año:
2001
Tipo del documento:
Article
Pais de publicación:
Estados Unidos