Your browser doesn't support javascript.
loading
Scaling evolution in shock-induced transition to turbulence.
Vorobieff, P; Mohamed, N-G; Tomkins, C; Goodenough, C; Marr-Lyon, M; Benjamin, R F.
Afiliación
  • Vorobieff P; The University of New Mexico, Albuquerque, New Mexico 87131, USA.
Phys Rev E Stat Nonlin Soft Matter Phys ; 68(6 Pt 2): 065301, 2003 Dec.
Article en En | MEDLINE | ID: mdl-14754257
In this experimental study, a column of heavy gas (SF6) surrounded by light gas (air) is accelerated by a planar Mach 1.2 shock. Richtmyer-Meshkov instability on the initially diffuse air-SF6 interface determines the repeatable large-scale vortex dynamics of the system after the shock passage. Subsequently secondary instabilities form, with the system eventually transitioning to turbulence. We present highly resolved measurements of two components of the instantaneous velocity fields. With these measurements, we investigate the evolution of velocity statistics over a substantial range of scales in terms of structure functions. The latter evolve to exhibit late-time behavior consistent with the Kolmogorov scaling law for fully developed turbulence, despite the transitional character, anisotropy, and inhomogeneity of our flow. Ensemble averaging and comparison with instantaneous results reveal a trend towards the same scaling manifested much earlier by the structure functions of the fluctuating velocity components.
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Rev E Stat Nonlin Soft Matter Phys Asunto de la revista: BIOFISICA / FISIOLOGIA Año: 2003 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Phys Rev E Stat Nonlin Soft Matter Phys Asunto de la revista: BIOFISICA / FISIOLOGIA Año: 2003 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos