Actions as space-time shapes.
IEEE Trans Pattern Anal Mach Intell
; 29(12): 2247-53, 2007 Dec.
Article
en En
| MEDLINE
| ID: mdl-17934233
Human action in video sequences can be seen as silhouettes of a moving torso and protruding limbs undergoing articulated motion. We regard human actions as three-dimensional shapes induced by the silhouettes in the space-time volume. We adopt a recent approach for analyzing 2D shapes and generalize it to deal with volumetric space-time action shapes. Our method utilizes properties of the solution to the Poisson equation to extract space-time features such as local space-time saliency, action dynamics, shape structure and orientation. We show that these features are useful for action recognition, detection and clustering. The method is fast, does not require video alignment and is applicable in (but not limited to) many scenarios where the background is known. Moreover, we demonstrate the robustness of our method to partial occlusions, non-rigid deformations, significant changes in scale and viewpoint, high irregularities in the performance of an action, and low quality video.
Buscar en Google
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Reconocimiento de Normas Patrones Automatizadas
/
Inteligencia Artificial
/
Interpretación de Imagen Asistida por Computador
/
Aumento de la Imagen
/
Imagen de Cuerpo Entero
/
Modelos Biológicos
/
Movimiento
Tipo de estudio:
Diagnostic_studies
/
Prognostic_studies
Límite:
Humans
Idioma:
En
Revista:
IEEE Trans Pattern Anal Mach Intell
Asunto de la revista:
INFORMATICA MEDICA
Año:
2007
Tipo del documento:
Article
País de afiliación:
Israel
Pais de publicación:
Estados Unidos