Your browser doesn't support javascript.
loading
Electronically subtracting expression patterns from a mixed cell population.
Gosink, Mark M; Petrie, Howard T; Tsinoremas, Nicholas F.
Afiliación
  • Gosink MM; Scientific Computing, Scripps Florida, 5353 Parkside Dr Jupiter, FL 33458, USA. gosink@scripps.edu
Bioinformatics ; 23(24): 3328-34, 2007 Dec 15.
Article en En | MEDLINE | ID: mdl-17956877
MOTIVATION: Biological samples frequently contain multiple cell-types that each can play a crucial role in the development and/or regulation of adjacent cells or tissues. The search for biomarkers, or expression patterns of, one cell-type in those samples can be a complex and time-consuming process. Ordinarily, extensive laboratory bench work must be performed to separate the mixed cell population into its subcomponents, such that each can be accurately characterized. RESULTS: We have developed a methodology to electronically subtract gene expression in one or more components of a mixed cell population from a mixture, to reveal the expression patterns of other minor or difficult to isolate components. Examination of simulated data indicates that this procedure can reliably determine the expression patterns in cell-types that contribute as little as 5% of the total expression in a mixed cell population. We re-analyzed microarray expression data from the viral infection of macrophages and from the T-cells of wild type and Foxp3 deletion mice. Using our subtraction methodology, we were able to substantially improve the identification of genes involved in processes of subcomponent portions of these samples.
Asunto(s)
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Reconocimiento de Normas Patrones Automatizadas / Inteligencia Artificial / Fenómenos Fisiológicos Celulares / Técnicas de Cocultivo / Análisis de Secuencia por Matrices de Oligonucleótidos / Proteoma / Perfilación de la Expresión Génica Límite: Animals Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2007 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido
Buscar en Google
Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Reconocimiento de Normas Patrones Automatizadas / Inteligencia Artificial / Fenómenos Fisiológicos Celulares / Técnicas de Cocultivo / Análisis de Secuencia por Matrices de Oligonucleótidos / Proteoma / Perfilación de la Expresión Génica Límite: Animals Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2007 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido