A novel method for nonstationary power spectral density estimation of cardiovascular pressure signals based on a Kalman filter with variable number of measurements.
Med Biol Eng Comput
; 46(8): 789-97, 2008 Aug.
Article
en En
| MEDLINE
| ID: mdl-18496723
We present a novel parametric power spectral density (PSD) estimation algorithm for nonstationary signals based on a Kalman filter with variable number of measurements (KFVNM). The nonstationary signals under consideration are modeled as time-varying autoregressive (AR) processes. The proposed algorithm uses a block of measurements to estimate the time-varying AR coefficients and obtains high-resolution PSD estimates. The intersection of confidence intervals (ICI) rule is incorporated into the algorithm to generate a PSD with adaptive window size from a series of PSDs with different number of measurements. We report the results of a quantitative assessment study and show an illustrative example involving the application of the algorithm to intracranial pressure signals (ICP) from patients with traumatic brain injury (TBI).
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Presión Sanguínea
/
Procesamiento de Señales Asistido por Computador
/
Lesiones Encefálicas
/
Presión Intracraneal
Tipo de estudio:
Diagnostic_studies
/
Evaluation_studies
/
Prognostic_studies
Límite:
Humans
Idioma:
En
Revista:
Med Biol Eng Comput
Año:
2008
Tipo del documento:
Article
País de afiliación:
China
Pais de publicación:
Estados Unidos