Using a patient image archive to diagnose retinopathy.
Annu Int Conf IEEE Eng Med Biol Soc
; 2008: 5441-4, 2008.
Article
en En
| MEDLINE
| ID: mdl-19163948
Diabetes has become an epidemic that is expected to impact 365 million people worldwide by 2025. Consequently, diabetic retinopathy is the leading cause of blindness in the industrialized world today. If detected early, treatments can preserve vision and significantly reduce debilitating blindness. Through this research we are developing and testing a method for automating the diagnosis of retinopathy in a screening environment using a patient archive and digital fundus imagery. We present an overview of our content-based image retrieval (CBIR) approach and provide performance results for a dataset of 98 images from a study in Canada when compared to an archive of 1,355 patients from a study in the Netherlands. An aggregate performance of 89% correct diagnosis is achieved, demonstrating the potential of automated, web-based diagnosis for a broad range of imagery collected under different conditions and with different cameras.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Sistemas de Administración de Bases de Datos
/
Reconocimiento de Normas Patrones Automatizadas
/
Angiografía con Fluoresceína
/
Interpretación de Imagen Asistida por Computador
/
Sistemas de Información Radiológica
/
Retinoscopía
/
Retinopatía Diabética
Tipo de estudio:
Diagnostic_studies
/
Prognostic_studies
/
Screening_studies
Límite:
Humans
Idioma:
En
Revista:
Annu Int Conf IEEE Eng Med Biol Soc
Año:
2008
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Estados Unidos