Flexible poly(amic acid) conducting polymers: effect of chemical composition on structural, electrochemical, and mechanical properties.
Langmuir
; 26(17): 14194-202, 2010 Sep 07.
Article
en En
| MEDLINE
| ID: mdl-20662482
A new approach for creating flexible, mechanically strong poly(amic acid) (PAA) hybrid copolymers is described. The reduction of gold salts to gold nanoparticles by PAA coupled with its copolymerization in the presence of various silanes (e.g., N-[3-(trimethoxysilyl)-propyl] aniline (TMOSPA), 3-aminopropyl-trimethoxysilane (APTMOS), dichlorodimethylsilane (DCMS), and tetramethoxysilane (TMOS)) has enabled the design of a series of polymeric films. The resulting poly(amic acid), silane, and gold (PSG) solutions were employed for the fabrication of flexible, ternary polymers with a minimum bend ratio of 3 mm using thermal desolvation and/or wet-phase inversion techniques. By controlling the composition and synthesis conditions, porous PSG films were produced that are flexible or rigid, transparent or opaque, and/or mechanically strong. (1)H NMR, (13)C NMR, and Fourier transform infrared spectroscopy (FTIR) characterization results showed that the carboxylic acid moieties were retained in the PSG copolymer. Thermal stabilities with degradation characteristics of the polymers were determined using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Although structurally and morphologically different from the parent PAA, copolymerization with silanes had significantly improved the mechanical and interfacial property of the PSG class of films.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Polímeros
/
Derivados del Benceno
Idioma:
En
Revista:
Langmuir
Asunto de la revista:
QUIMICA
Año:
2010
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Estados Unidos