Your browser doesn't support javascript.
loading
Design of optimal stimulation patterns for neuronal ensembles based on Volterra-type hierarchical modeling.
Marmarelis, V Z; Shin, D C; Hampson, R E; Deadwyler, S A; Song, D; Berger, T W.
Afiliación
  • Marmarelis VZ; Department of Biomedical Engineering and the Biomedical Simulations Resource, University of Southern California, Los Angeles, CA 90089, USA. vzm@usc.edu
J Neural Eng ; 9(6): 066003, 2012 Dec.
Article en En | MEDLINE | ID: mdl-23075519
This paper presents a general methodology for the optimal design of stimulation patterns applied to neuronal ensembles in order to elicit a desired effect. The methodology follows a variant of the hierarchical Volterra modeling approach that utilizes input-output data to construct predictive models that describe the effects of interactions among multiple input events in an ascending order of interaction complexity. The illustrative example presented in this paper concerns the multi-unit activity of CA1 neurons in the hippocampus of a rodent performing a learned delayed-nonmatch-to-sample (DNMS) task. The multi-unit activity of the hippocampal CA1 neurons is recorded via chronically implanted multi-electrode arrays during this task. The obtained model quantifies the likelihood of having correct performance of the specific task for a given multi-unit (spatiotemporal) activity pattern of a CA1 neuronal ensemble during the 'sample presentation' phase of the DNMS task. The model can be used to determine computationally (off-line) the 'optimal' multi-unit stimulation pattern that maximizes the likelihood of inducing the correct performance of the DNMS task. Our working hypothesis is that application of this optimal stimulation pattern will enhance performance of the DNMS task due to enhancement of memory formation and storage during the 'sample presentation' phase of the task.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Estimulación Eléctrica / Modelos Neurológicos / Neuronas Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: J Neural Eng Asunto de la revista: NEUROLOGIA Año: 2012 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Estimulación Eléctrica / Modelos Neurológicos / Neuronas Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: J Neural Eng Asunto de la revista: NEUROLOGIA Año: 2012 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido