Your browser doesn't support javascript.
loading
Standardized database development for EEG epileptiform transient detection: EEGnet scoring system and machine learning analysis.
Halford, Jonathan J; Schalkoff, Robert J; Zhou, Jing; Benbadis, Selim R; Tatum, William O; Turner, Robert P; Sinha, Saurabh R; Fountain, Nathan B; Arain, Amir; Pritchard, Paul B; Kutluay, Ekrem; Martz, Gabriel; Edwards, Jonathan C; Waters, Chad; Dean, Brian C.
Afiliación
  • Halford JJ; Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA. halfordj@musc.edu
J Neurosci Methods ; 212(2): 308-16, 2013 Jan 30.
Article en En | MEDLINE | ID: mdl-23174094
The routine scalp electroencephalogram (rsEEG) is the most common clinical neurophysiology procedure. The most important role of rsEEG is to detect evidence of epilepsy, in the form of epileptiform transients (ETs), also known as spike or sharp wave discharges. Due to the wide variety of morphologies of ETs and their similarity to artifacts and waves that are part of the normal background activity, the task of ET detection is difficult and mistakes are frequently made. The development of reliable computerized detection of ETs in the EEG could assist physicians in interpreting rsEEGs. We report progress in developing a standardized database for testing and training ET detection algorithms. We describe a new version of our EEGnet software system for collecting expert opinion on EEG datasets, a completely web-browser based system. We report results of EEG scoring from a group of 11 board-certified academic clinical neurophysiologists who annotated 30-s excepts from rsEEG recordings from 100 different patients. The scorers had moderate inter-scorer reliability and low to moderate intra-scorer reliability. In order to measure the optimal size of this standardized rsEEG database, we used machine learning models to classify paroxysmal EEG activity in our database into ET and non-ET classes. Based on our results, it appears that our database will need to be larger than its current size. Also, our non-parametric classifier, an artificial neural network, performed better than our parametric Bayesian classifier. Of our feature sets, the wavelet feature set proved most useful for classification.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Señales Asistido por Computador / Programas Informáticos / Inteligencia Artificial / Electroencefalografía Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Humans Idioma: En Revista: J Neurosci Methods Año: 2013 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Señales Asistido por Computador / Programas Informáticos / Inteligencia Artificial / Electroencefalografía Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Humans Idioma: En Revista: J Neurosci Methods Año: 2013 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Países Bajos