Guanine modification of inhibitory oligonucleotides potentiates their suppressive function.
J Immunol
; 191(6): 3240-53, 2013 Sep 15.
Article
en En
| MEDLINE
| ID: mdl-23966630
Inhibitory TLR7 and/or TLR9 oligonucleotides (inhibitory oligonucleotide [INH-ODN]) are characterized by a phosphorothioate backbone and a CC(T)XXX3â5GGG motif, respectively. INH-ODN 2088 is a prototypic member of this class of INH-ODN and acts as a TLR7 and TLR9 antagonist. It contains a G quadruple that leads to higher order structures by the formation of G tetrads. These structures are unfavorable for the prediction of their pharmacological and immunological behavior. We show in this study that modification of Gs within the G quadruple by 7-deaza-guanine or 7-deaza-2'-O-methyl-guanine avoids higher order structures and improves their inhibitory potential. Whereas TLR9-induced TNF-α secretion of bone marrow-derived macrophages and conventional dendritic cells was equally inhibited by INH-ODN 2088 and G-modified INH-ODNs such as INH-ODN 24888, TLR7-induced TNF-α release and TLR7- and TLR9-induced IL-12p40 release were significantly more impaired by G-modified INH-ODNs. Similarly, the IL-6 release of B cells from wild-type and autoimmune MRL/Mp-lpr/lpr mice was more efficiently impaired by G-modified INH-ODNs. Surprisingly, INH-ODN 2088 stimulated B cells to proliferate when used in higher doses. Finally, in vivo, in wild-type and autoimmune MRL/Mp-lpr/lpr mice, G-modified INH-ODN 24888 was significantly more efficient than unmodified INH-ODN 2088. In summary, G modification allows the development of INH-ODNs with superior inhibitory potency for inflammatory diseases with high medical need such as systemic lupus erythematosus.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Oligonucleótidos
/
Guanina
/
Tolerancia Inmunológica
Límite:
Animals
Idioma:
En
Revista:
J Immunol
Año:
2013
Tipo del documento:
Article
País de afiliación:
Alemania
Pais de publicación:
Estados Unidos