Extended nonlinear Schrödinger equation with higher-order odd and even terms and its rogue wave solutions.
Phys Rev E Stat Nonlin Soft Matter Phys
; 89(1): 012907, 2014 Jan.
Article
en En
| MEDLINE
| ID: mdl-24580297
We consider an extended nonlinear Schrödinger equation with higher-order odd (third order) and even (fourth order) terms with variable coefficients. The resulting equation has soliton solutions and approximate rogue wave solutions. We present these solutions up to second order. Moreover, specific constraints on the parameters of higher-order terms provide integrability of the resulting equation, providing a corresponding Lax pair. Particular cases of this equation are the Hirota and the Lakshmanan-Porsezian-Daniel equations. The resulting integrable equation admits exact rogue wave solutions. In particular cases, mentioned above, these solutions are reduced to the rogue wave solutions of the corresponding equations.
Buscar en Google
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Phys Rev E Stat Nonlin Soft Matter Phys
Asunto de la revista:
BIOFISICA
/
FISIOLOGIA
Año:
2014
Tipo del documento:
Article
País de afiliación:
Australia
Pais de publicación:
Estados Unidos