Your browser doesn't support javascript.
loading
Using optimal interpolation to assimilate surface measurements and satellite AOD for ozone and PM2.5: A case study for July 2011.
Tang, Youhua; Chai, Tianfeng; Pan, Li; Lee, Pius; Tong, Daniel; Kim, Hyun-Cheol; Chen, Weiwei.
Afiliación
  • Tang Y; a NOAA Air Resources Laboratory, College Park , MD , USA.
  • Chai T; b Cooperative Institute for Climate and Satellites , University of Maryland, College Park , MD , USA.
  • Pan L; a NOAA Air Resources Laboratory, College Park , MD , USA.
  • Lee P; b Cooperative Institute for Climate and Satellites , University of Maryland, College Park , MD , USA.
  • Tong D; a NOAA Air Resources Laboratory, College Park , MD , USA.
  • Kim HC; b Cooperative Institute for Climate and Satellites , University of Maryland, College Park , MD , USA.
  • Chen W; a NOAA Air Resources Laboratory, College Park , MD , USA.
J Air Waste Manag Assoc ; 65(10): 1206-16, 2015 Oct.
Article en En | MEDLINE | ID: mdl-26091206
UNLABELLED: We employed an optimal interpolation (OI) method to assimilate AIRNow ozone/PM2.5 and MODIS (Moderate Resolution Imaging Spectroradiometer) aerosol optical depth (AOD) data into the Community Multi-scale Air Quality (CMAQ) model to improve the ozone and total aerosol concentration for the CMAQ simulation over the contiguous United States (CONUS). AIRNow data assimilation was applied to the boundary layer, and MODIS AOD data were used to adjust total column aerosol. Four OI cases were designed to examine the effects of uncertainty setting and assimilation time; two of these cases used uncertainties that varied in time and location, or "dynamic uncertainties." More frequent assimilation and higher model uncertainties pushed the modeled results closer to the observation. Our comparison over a 24-hr period showed that ozone and PM2.5 mean biases could be reduced from 2.54 ppbV to 1.06 ppbV and from -7.14 µg/m³ to -0.11 µg/m³, respectively, over CONUS, while their correlations were also improved. Comparison to DISCOVER-AQ 2011 aircraft measurement showed that surface ozone assimilation applied to the CMAQ simulation improves regional low-altitude (below 2 km) ozone simulation. IMPLICATIONS: This paper described an application of using optimal interpolation method to improve the model's ozone and PM2.5 estimation using surface measurement and satellite AOD. It highlights the usage of the operational AIRNow data set, which is available in near real time, and the MODIS AOD. With a similar method, we can also use other satellite products, such as the latest VIIRS products, to improve PM2.5 prediction.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ozono / Monitoreo del Ambiente / Aerosoles / Contaminantes Atmosféricos / Material Particulado Tipo de estudio: Prognostic_studies País/Región como asunto: America do norte Idioma: En Revista: J Air Waste Manag Assoc Asunto de la revista: SAUDE AMBIENTAL Año: 2015 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ozono / Monitoreo del Ambiente / Aerosoles / Contaminantes Atmosféricos / Material Particulado Tipo de estudio: Prognostic_studies País/Región como asunto: America do norte Idioma: En Revista: J Air Waste Manag Assoc Asunto de la revista: SAUDE AMBIENTAL Año: 2015 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos