Your browser doesn't support javascript.
loading
Driver crash risk factors and prevalence evaluation using naturalistic driving data.
Dingus, Thomas A; Guo, Feng; Lee, Suzie; Antin, Jonathan F; Perez, Miguel; Buchanan-King, Mindy; Hankey, Jonathan.
Afiliación
  • Dingus TA; Virginia Tech Transportation Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061; tdingus@vtti.vt.edu.
  • Guo F; Virginia Tech Transportation Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061; Department of Statistics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061.
  • Lee S; Virginia Tech Transportation Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061;
  • Antin JF; Virginia Tech Transportation Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061;
  • Perez M; Virginia Tech Transportation Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061;
  • Buchanan-King M; Virginia Tech Transportation Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061;
  • Hankey J; Virginia Tech Transportation Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061;
Proc Natl Acad Sci U S A ; 113(10): 2636-41, 2016 Mar 08.
Article en En | MEDLINE | ID: mdl-26903657
The accurate evaluation of crash causal factors can provide fundamental information for effective transportation policy, vehicle design, and driver education. Naturalistic driving (ND) data collected with multiple onboard video cameras and sensors provide a unique opportunity to evaluate risk factors during the seconds leading up to a crash. This paper uses a National Academy of Sciences-sponsored ND dataset comprising 905 injurious and property damage crash events, the magnitude of which allows the first direct analysis (to our knowledge) of causal factors using crashes only. The results show that crash causation has shifted dramatically in recent years, with driver-related factors (i.e., error, impairment, fatigue, and distraction) present in almost 90% of crashes. The results also definitively show that distraction is detrimental to driver safety, with handheld electronic devices having high use rates and risk.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Conducción de Automóvil / Accidentes de Tránsito / Bases de Datos Factuales / Ciudades Tipo de estudio: Clinical_trials / Etiology_studies / Prevalence_studies / Prognostic_studies / Risk_factors_studies Límite: Adolescent / Adult / Aged / Aged80 / Humans / Middle aged País/Región como asunto: America do norte Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2016 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Conducción de Automóvil / Accidentes de Tránsito / Bases de Datos Factuales / Ciudades Tipo de estudio: Clinical_trials / Etiology_studies / Prevalence_studies / Prognostic_studies / Risk_factors_studies Límite: Adolescent / Adult / Aged / Aged80 / Humans / Middle aged País/Región como asunto: America do norte Idioma: En Revista: Proc Natl Acad Sci U S A Año: 2016 Tipo del documento: Article Pais de publicación: Estados Unidos