A Data Mining Approach for Exploring Correlates of Self-Reported Comparative Physical Activity Levels of Urban Latinos.
Stud Health Technol Inform
; 225: 553-7, 2016.
Article
en En
| MEDLINE
| ID: mdl-27332262
We applied data mining techniques to a community-based behavioral dataset to build prediction models to gain insights about physical activity levels as the foundation for future interventions for urban Latinos. Our application of data mining strategies identified environment factors including having a convenient location for physical activity and psychological factors including depression as the strongest correlates of self-reported comparative physical activity among hundreds of variables. The data mining methods were useful to build prediction models to gain insights about perceptions of physical activity behavior as compared to peers.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Ejercicio Físico
/
Conductas Relacionadas con la Salud
/
Hispánicos o Latinos
/
Conducta Sedentaria
/
Minería de Datos
/
Autoinforme
Tipo de estudio:
Etiology_studies
/
Prevalence_studies
/
Prognostic_studies
/
Risk_factors_studies
Límite:
Adult
/
Aged
/
Female
/
Humans
/
Male
/
Middle aged
País/Región como asunto:
America do norte
Idioma:
En
Revista:
Stud Health Technol Inform
Asunto de la revista:
INFORMATICA MEDICA
/
PESQUISA EM SERVICOS DE SAUDE
Año:
2016
Tipo del documento:
Article
País de afiliación:
Estados Unidos
Pais de publicación:
Países Bajos