Three-dimensional (3D) printing of mouse primary hepatocytes to generate 3D hepatic structure.
Ann Surg Treat Res
; 92(2): 67-72, 2017 Feb.
Article
en En
| MEDLINE
| ID: mdl-28203553
PURPOSE: The major problem in producing artificial livers is that primary hepatocytes cannot be cultured for many days. Recently, 3-dimensional (3D) printing technology draws attention and this technology regarded as a useful tool for current cell biology. By using the 3D bio-printing, these problems can be resolved. METHODS: To generate 3D bio-printed structures (25 mm × 25 mm), cells-alginate constructs were fabricated by 3D bio-printing system. Mouse primary hepatocytes were isolated from the livers of 6-8 weeks old mice by a 2-step collagenase method. Samples of 4 × 107 hepatocytes with 80%-90% viability were printed with 3% alginate solution, and cultured with well-defined culture medium for primary hepatocytes. To confirm functional ability of hepatocytes cultured on 3D alginate scaffold, we conducted quantitative real-time polymerase chain reaction and immunofluorescence with hepatic marker genes. RESULTS: Isolated primary hepatocytes were printed with alginate. The 3D printed hepatocytes remained alive for 14 days. Gene expression levels of Albumin, HNF-4α and Foxa3 were gradually increased in the 3D structures. Immunofluorescence analysis showed that the primary hepatocytes produced hepatic-specific proteins over the same period of time. CONCLUSION: Our research indicates that 3D bio-printing technique can be used for long-term culture of primary hepatocytes. It can therefore be used for drug screening and as a potential method of producing artificial livers.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Ann Surg Treat Res
Año:
2017
Tipo del documento:
Article
Pais de publicación:
Corea del Sur