Your browser doesn't support javascript.
loading
Application of visible and near-infrared spectroscopy to classification of Miscanthus species.
Jin, Xiaoli; Chen, Xiaoling; Xiao, Liang; Shi, Chunhai; Chen, Liang; Yu, Bin; Yi, Zili; Yoo, Ji Hye; Heo, Kweon; Yu, Chang Yeon; Yamada, Toshihiko; Sacks, Erik J; Peng, Junhua.
Afiliación
  • Jin X; Department of Agronomy & The Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China.
  • Chen X; Department of Agronomy & The Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China.
  • Xiao L; Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, Hunan Changsha, China.
  • Shi C; Department of Agronomy & The Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China.
  • Chen L; Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China.
  • Yu B; Wuhan Junxiu Horticultural Science and Technology Co., Ltd. Wuhan, Hubei, China.
  • Yi Z; Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, Hunan Changsha, China.
  • Yoo JH; Kangwon National University, Chuncheon, Gangwon, South Korea.
  • Heo K; Kangwon National University, Chuncheon, Gangwon, South Korea.
  • Yu CY; Kangwon National University, Chuncheon, Gangwon, South Korea.
  • Yamada T; Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, Hokkaido, Japan.
  • Sacks EJ; Department of Crop Sciences, University of Illinois, Urbana-Champaign, Urbana, Illinois, United States of America.
  • Peng J; Life Science and Technology Center, China National Seed Group Co., Ltd., Wuhan, Hubei, China.
PLoS One ; 12(4): e0171360, 2017.
Article en En | MEDLINE | ID: mdl-28369059
The feasibility of visible and near infrared (NIR) spectroscopy as tool to classify Miscanthus samples was explored in this study. Three types of Miscanthus plants, namely, M. sinensis, M. sacchariflorus and M. fIoridulus, were analyzed using a NIR spectrophotometer. Several classification models based on the NIR spectra data were developed using line discriminated analysis (LDA), partial least squares (PLS), least squares support vector machine regression (LSSVR), radial basis function (RBF) and neural network (NN). The principal component analysis (PCA) presented rough classification with overlapping samples, while the models of Line_LSSVR, RBF_LSSVR and RBF_NN presented almost same calibration and validation results. Due to the higher speed of Line_LSSVR than RBF_LSSVR and RBF_NN, we selected the line_LSSVR model as a representative. In our study, the model based on line_LSSVR showed higher accuracy than LDA and PLS models. The total correct classification rates of 87.79 and 96.51% were observed based on LDA and PLS model in the testing set, respectively, while the line_LSSVR showed 99.42% of total correct classification rate. Meanwhile, the lin_LSSVR model in the testing set showed correct classification rate of 100, 100 and 96.77% for M. sinensis, M. sacchariflorus and M. fIoridulus, respectively. The lin_LSSVR model assigned 99.42% of samples to the right groups, except one M. fIoridulus sample. The results demonstrated that NIR spectra combined with a preliminary morphological classification could be an effective and reliable procedure for the classification of Miscanthus species.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Poaceae Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2017 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Poaceae Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2017 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos