Your browser doesn't support javascript.
loading
Size effect and scaling power-law for superelasticity in shape-memory alloys at the nanoscale.
Gómez-Cortés, Jose F; Nó, Maria L; López-Ferreño, Iñaki; Hernández-Saz, Jesús; Molina, Sergio I; Chuvilin, Andrey; San Juan, Jose M.
Afiliación
  • Gómez-Cortés JF; Departamento Física de la Materia Condensada, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo 644, 48080 Bilbao, Spain.
  • Nó ML; Departamento Física Aplicada II, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo 644, 48080 Bilbao, Spain.
  • López-Ferreño I; Departamento Física de la Materia Condensada, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo 644, 48080 Bilbao, Spain.
  • Hernández-Saz J; Departamento de Ciencia de los Materiales e I.M. y Q.I, Facultad de Ciencias, IMEYMAT, Universidad de Cádiz, Campus Río San Pedro, 11510 Puerto Real, Cádiz, Spain.
  • Molina SI; Departamento de Ciencia de los Materiales e I.M. y Q.I, Facultad de Ciencias, IMEYMAT, Universidad de Cádiz, Campus Río San Pedro, 11510 Puerto Real, Cádiz, Spain.
  • Chuvilin A; CIC nanoGUNE, Tolosa Hiribidea 76, 20018 Donostia-San Sebastian, Spain.
  • San Juan JM; IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain.
Nat Nanotechnol ; 12(8): 790-796, 2017 08.
Article en En | MEDLINE | ID: mdl-28553962
Shape-memory alloys capable of a superelastic stress-induced phase transformation and a high displacement actuation have promise for applications in micro-electromechanical systems for wearable healthcare and flexible electronic technologies. However, some of the fundamental aspects of their nanoscale behaviour remain unclear, including the question of whether the critical stress for the stress-induced martensitic transformation exhibits a size effect similar to that observed in confined plasticity. Here we provide evidence of a strong size effect on the critical stress that induces such a transformation with a threefold increase in the trigger stress in pillars milled on [001] L21 single crystals from a Cu-Al-Ni shape-memory alloy from 2 µm to 260 nm in diameter. A power-law size dependence of n = -2 is observed for the nanoscale superelasticity. Our observation is supported by the atomic lattice shearing and an elastic model for homogeneous martensite nucleation.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Nanotechnol Año: 2017 Tipo del documento: Article País de afiliación: España Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nat Nanotechnol Año: 2017 Tipo del documento: Article País de afiliación: España Pais de publicación: Reino Unido