Your browser doesn't support javascript.
loading
Synthetic Clay-based Hypoxia Mimetic Hydrogel for Pulp Regeneration: The Impact on Cell Activity and Release Kinetics Based on Dental Pulp-derived Cells In Vitro.
Müller, Anna Sonja; Artner, Mara; Janjic, Klara; Edelmayer, Michael; Kurzmann, Christoph; Moritz, Andreas; Agis, Hermann.
Afiliación
  • Müller AS; Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
  • Artner M; Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
  • Janjic K; Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
  • Edelmayer M; Austrian Cluster for Tissue Regeneration, Vienna, Austria; Department of Oral Surgery, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria.
  • Kurzmann C; Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
  • Moritz A; Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
  • Agis H; Department of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria. Electronic address: hermann.agis@meduniwien.ac.at.
J Endod ; 44(8): 1263-1269, 2018 Aug.
Article en En | MEDLINE | ID: mdl-29958677
INTRODUCTION: Thixotropic synthetic clays have been successfully used for tissue engineering in regenerative medicine. The impact of these clays on the dental pulp, in particular in combination with hypoxia-based approaches using hypoxia mimetic agents (HMAs), is unknown. Our aim was to reveal the response of dental pulp-derived cells (DPCs) to a synthetic clay-based hydrogel and evaluate the release of HMAs. METHODS: Using resazurin-based toxicity assays, live-dead staining, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide staining, the viability of human DPCs seeded onto a synthetic clay-based hydrogel of 5%-0.15% as well as onto the hydrogels loaded with the HMAs dimethyloxalylglycine (DMOG), desferrioxamine, L-mimosine, and CoCl2 was evaluated. Furthermore, supernatant of the hydrogels loaded with HMAs were generated. Vascular endothelial growth factor (VEGF) production of DPCs in response to the supernatant was measured to reveal the cellular response to the HMAs. RESULTS: We found that the synthetic clay-based hydrogel did not impair the viability of DPCs. Cell monolayer and cell cluster formations were observed on the hydrogel. No significant increase of VEGF levels was observed in the supernatant when DPCs were cultured on hydrogels loaded with HMAs. Supernatant of DMOG-loaded hydrogels stimulated VEGF production in DPCs in the first hour, whereas the effect of desferrioxamine, L-mimosine, and CoCl2 did not reach a level of significance. CONCLUSIONS: The synthetic clay-based hydrogel represents a promising biomaterial that does not induce prominent toxic effects in DPCs. It can be loaded with DMOG to induce hypoxia mimetic activity. Overall, we provided first insights into the impact of synthetic clays on DPCs for tissue engineering purposes in regenerative endodontics.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Pulpa Dental / Endodoncia Regenerativa Límite: Humans Idioma: En Revista: J Endod Año: 2018 Tipo del documento: Article País de afiliación: Austria Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Pulpa Dental / Endodoncia Regenerativa Límite: Humans Idioma: En Revista: J Endod Año: 2018 Tipo del documento: Article País de afiliación: Austria Pais de publicación: Estados Unidos