Your browser doesn't support javascript.
loading
Comparative proteomic analysis of Pogostemon cablin leaves after continuous cropping.
Zhang, Junfeng; He, Liping; Wu, Yougen; Ma, Wentin; Chen, He; Ye, Zhouchen.
Afiliación
  • Zhang J; Key Laboratory of Protection, Development and Utilization of Tropical Crop Germplasm Resources of the Ministry of Education, College of Horticulture and Landscape, Material and Chemical Engineering College, Hainan University, Haikou, 570228, PR China.
  • He L; Key Laboratory of Protection, Development and Utilization of Tropical Crop Germplasm Resources of the Ministry of Education, College of Horticulture and Landscape, Material and Chemical Engineering College, Hainan University, Haikou, 570228, PR China.
  • Wu Y; Key Laboratory of Protection, Development and Utilization of Tropical Crop Germplasm Resources of the Ministry of Education, College of Horticulture and Landscape, Material and Chemical Engineering College, Hainan University, Haikou, 570228, PR China. Electronic address: wygeng2003@163.com.
  • Ma W; Key Laboratory of Protection, Development and Utilization of Tropical Crop Germplasm Resources of the Ministry of Education, College of Horticulture and Landscape, Material and Chemical Engineering College, Hainan University, Haikou, 570228, PR China.
  • Chen H; Key Laboratory of Protection, Development and Utilization of Tropical Crop Germplasm Resources of the Ministry of Education, College of Horticulture and Landscape, Material and Chemical Engineering College, Hainan University, Haikou, 570228, PR China.
  • Ye Z; Key Laboratory of Protection, Development and Utilization of Tropical Crop Germplasm Resources of the Ministry of Education, College of Horticulture and Landscape, Material and Chemical Engineering College, Hainan University, Haikou, 570228, PR China.
Protein Expr Purif ; 152: 13-22, 2018 12.
Article en En | MEDLINE | ID: mdl-30017744
A proteomic approach was used to understand the molecular mechanisms underlying obstacles to the continuous cropping of Pogostemon cablin. We examined differences in protein abundance between control (CK) and continuously cropped (TR) P. cablin leaves at different time points (90, 150, and 210 days after culture). Comparative analysis by two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) revealed 183 differentially expressed protein spots, of which 87 proteins or isoforms were identified using mass spectrometry. Among these differentially expressed proteins (DEPs), 50 proteins or isoforms showed increased abundance and 37 proteins or isoforms showed decreased abundance in the TR sample compared with the abundance in the CK sample. Bioinformatic tools were used to analyze the DEPs. These proteins were classified into 12 categories according to clusters of orthologous groups (COG) analysis, with the majority being involved in post-translational modification, protein turnover, and chaperones, followed by carbohydrate transport and metabolism, and finally, energy production and conversion. Protein-protein interactions revealed that 18 DEPs were involved in energy metabolism, 6 DEPs were involved in stress response, and 4 DEPs were involved in amino acid biosynthesis. Continuous cropping altered the expression of proteins related to energy metabolism, carbohydrate metabolism, and amino acid metabolism in P. cablin leaves. Among these processes, the most affected was energy metabolism, which may be pivotal for resistance to continuous cropping.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas de Plantas / Procesamiento Proteico-Postraduccional / Hojas de la Planta / Regulación de la Expresión Génica de las Plantas / Proteoma / Pogostemon Idioma: En Revista: Protein Expr Purif Asunto de la revista: BIOLOGIA MOLECULAR Año: 2018 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas de Plantas / Procesamiento Proteico-Postraduccional / Hojas de la Planta / Regulación de la Expresión Génica de las Plantas / Proteoma / Pogostemon Idioma: En Revista: Protein Expr Purif Asunto de la revista: BIOLOGIA MOLECULAR Año: 2018 Tipo del documento: Article Pais de publicación: Estados Unidos