Your browser doesn't support javascript.
loading
Molecular ejection transition in liquid crystal columns self-assembled from wedge-shaped minidendrons.
Fall, William S; Yen, Ming-Huei; Zeng, Xiangbing; Cseh, Liliana; Liu, Yongsong; Gehring, Gillian A; Ungar, Goran.
Afiliación
  • Fall WS; Department of Physics, Zhejiang Sci-Tech University, Xiasha College Park, Hangzhou 310018, China and Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK. g.gehring@sheffield.ac.uk.
  • Yen MH; Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK. g.ungar@sheffield.ac.uk.
  • Zeng X; Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK. g.ungar@sheffield.ac.uk.
  • Cseh L; Institute of Chemistry Timisoara of Romanian Academy, Timisoara-300223, Romania.
  • Liu Y; Department of Physics, Zhejiang Sci-Tech University, Xiasha College Park, Hangzhou 310018, China.
  • Gehring GA; Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK. g.gehring@sheffield.ac.uk.
  • Ungar G; Department of Physics, Zhejiang Sci-Tech University, Xiasha College Park, Hangzhou 310018, China and Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK. g.ungar@sheffield.ac.uk.
Soft Matter ; 15(1): 22-29, 2018 Dec 19.
Article en En | MEDLINE | ID: mdl-30411766
Fan-shaped molecules with aromatic head-groups and two or more flexible pendant chains often self-assemble into columns that form columnar liquid crystals by packing on a 2d lattice. Such dendrons or minidendrons are essential building blocks in a large number of synthetic self-assembled systems and organic device materials. Here we report a new type of phase transition that occurs between two hexagonal columnar phases, Colh1 and Colh2, of Na-salt of 3,4,5-tris-dodecyloxy benzoic acid. Interestingly, the transition does not change the symmetry, which is p6mm in both phases, but on heating it involves a quantised drop in the number of molecules n in the cross-section of a column. The drop is from 4 to 3.5, with a further continuous decrease toward n = 3 as temperature increases further above Tc. The finding is based on evidence from X-ray diffraction. Using a transfer matrix formulation for the interactions within a column, with small additional mean field terms, we describe quantitatively the observed changes in terms of intermolecular forces responsible for the formation of supramolecular columns. The driving force behind temperature-induced molecular ejection from the columns is the increase in conformational disorder and the consequent lateral expansion of the alkyl chains. The asymmetry of the transition is due to the local order between 4-molecule discs giving extra stability to purely n = 4 columns.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Soft Matter Año: 2018 Tipo del documento: Article Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Soft Matter Año: 2018 Tipo del documento: Article Pais de publicación: Reino Unido