Your browser doesn't support javascript.
loading
What can millions of laboratory test results tell us about the temporal aspect of data quality? Study of data spanning 17 years in a clinical data warehouse.
Looten, Vincent; Kong Win Chang, Liliane; Neuraz, Antoine; Landau-Loriot, Marie-Anne; Vedie, Benoit; Paul, Jean-Louis; Mauge, Laëtitia; Rivet, Nadia; Bonifati, Angela; Chatellier, Gilles; Burgun, Anita; Rance, Bastien.
Afiliación
  • Looten V; INSERM, Centre de Recherche des Cordeliers, UMRS 1138, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Hôpital Européen Georges Pompidou, Department of Medical Informatics, Assistance Publique - Hôpitaux de Paris (AP-HP), Université Paris Descartes, 20 rue Leblanc, 75015 Paris, Franc
  • Kong Win Chang L; LIRIS UMR CNRS 5205, Université Claude Bernard Lyon 1, Villeurbanne, France.
  • Neuraz A; INSERM, Centre de Recherche des Cordeliers, UMRS 1138, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Hôpital Necker - Enfants Malades, Department of Medical Informatics, Assistance Publique - Hôpitaux de Paris (AP-HP), Université Paris Descartes, France.
  • Landau-Loriot MA; Hôpital Européen Georges Pompidou, Department of Biochimistry, Assistance Publique - Hôpitaux de Paris (AP-HP), Université Paris Descartes, France.
  • Vedie B; Hôpital Européen Georges Pompidou, Department of Biochimistry, Assistance Publique - Hôpitaux de Paris (AP-HP), Université Paris Descartes, France.
  • Paul JL; Hôpital Européen Georges Pompidou, Department of Biochimistry, Assistance Publique - Hôpitaux de Paris (AP-HP), Université Paris Descartes, France.
  • Mauge L; Hôpital Européen Georges Pompidou, Department of Hematology, Assistance Publique - Hôpitaux de Paris (AP-HP), Université Paris Descartes, France.
  • Rivet N; Hôpital Européen Georges Pompidou, Department of Hematology, Assistance Publique - Hôpitaux de Paris (AP-HP), Université Paris Descartes, France.
  • Bonifati A; LIRIS UMR CNRS 5205, Université Claude Bernard Lyon 1, Villeurbanne, France.
  • Chatellier G; Hôpital Européen Georges Pompidou, Department of Medical Informatics, Assistance Publique - Hôpitaux de Paris (AP-HP), Université Paris Descartes, 20 rue Leblanc, 75015 Paris, France.
  • Burgun A; INSERM, Centre de Recherche des Cordeliers, UMRS 1138, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Hôpital Européen Georges Pompidou, Department of Medical Informatics, Assistance Publique - Hôpitaux de Paris (AP-HP), Université Paris Descartes, 20 rue Leblanc, 75015 Paris, Franc
  • Rance B; INSERM, Centre de Recherche des Cordeliers, UMRS 1138, Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Hôpital Européen Georges Pompidou, Department of Medical Informatics, Assistance Publique - Hôpitaux de Paris (AP-HP), Université Paris Descartes, 20 rue Leblanc, 75015 Paris, Franc
Comput Methods Programs Biomed ; 181: 104825, 2019 Nov.
Article en En | MEDLINE | ID: mdl-30612785
OBJECTIVE: To identify common temporal evolution profiles in biological data and propose a semi-automated method to these patterns in a clinical data warehouse (CDW). MATERIALS AND METHODS: We leveraged the CDW of the European Hospital Georges Pompidou and tracked the evolution of 192 biological parameters over a period of 17 years (for 445,000 + patients, and 131 million laboratory test results). RESULTS: We identified three common profiles of evolution: discretization, breakpoints, and trends. We developed computational and statistical methods to identify these profiles in the CDW. Overall, of the 192 observed biological parameters (87,814,136 values), 135 presented at least one evolution. We identified breakpoints in 30 distinct parameters, discretizations in 32, and trends in 79. DISCUSSION AND CONCLUSION: our method allowed the identification of several temporal events in the data. Considering the distribution over time of these events, we identified probable causes for the observed profiles: instruments or software upgrades and changes in computation formulas. We evaluated the potential impact for data reuse. Finally, we formulated recommendations to enable safe use and sharing of biological data collection to limit the impact of data evolution in retrospective and federated studies (e.g. the annotation of laboratory parameters presenting breakpoints or trends).
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Informática Médica / Almacenamiento y Recuperación de la Información / Registros Electrónicos de Salud / Servicios de Laboratorio Clínico / Exactitud de los Datos / Data Warehousing Tipo de estudio: Guideline / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Humans País/Región como asunto: Europa Idioma: En Revista: Comput Methods Programs Biomed Asunto de la revista: INFORMATICA MEDICA Año: 2019 Tipo del documento: Article Pais de publicación: Irlanda

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Informática Médica / Almacenamiento y Recuperación de la Información / Registros Electrónicos de Salud / Servicios de Laboratorio Clínico / Exactitud de los Datos / Data Warehousing Tipo de estudio: Guideline / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Humans País/Región como asunto: Europa Idioma: En Revista: Comput Methods Programs Biomed Asunto de la revista: INFORMATICA MEDICA Año: 2019 Tipo del documento: Article Pais de publicación: Irlanda