Your browser doesn't support javascript.
loading
Machine learning applied to multi-sensor information to reduce false alarm rate in the ICU.
Hever, Gal; Cohen, Liel; O'Connor, Michael F; Matot, Idit; Lerner, Boaz; Bitan, Yuval.
Afiliación
  • Hever G; Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, POB 653, Beer Sheva, Israel.
  • Cohen L; Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, POB 653, Beer Sheva, Israel.
  • O'Connor MF; Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL, USA.
  • Matot I; Department of Anesthesia and Critical Care, Tel-Aviv Medical Center, Tel-Aviv, Israel.
  • Lerner B; Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, POB 653, Beer Sheva, Israel.
  • Bitan Y; Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, POB 653, Beer Sheva, Israel. yuval@bitan.net.
J Clin Monit Comput ; 34(2): 339-352, 2020 Apr.
Article en En | MEDLINE | ID: mdl-30955160
Studies reveal that the false alarm rate (FAR) demonstrated by intensive care unit (ICU) vital signs monitors ranges from 0.72 to 0.99. We applied machine learning (ML) to ICU multi-sensor information to imitate a medical specialist in diagnosing patient condition. We hypothesized that applying this data-driven approach to medical monitors will help reduce the FAR even when data from sensors are missing. An expert-based rules algorithm identified and tagged in our dataset seven clinical alarm scenarios. We compared a random forest (RF) ML model trained using the tagged data, where parameters (e.g., heart rate or blood pressure) were (deliberately) removed, in detecting ICU signals with the full expert-based rules (FER), our ground truth, and partial expert-based rules (PER), missing these parameters. When all alarm scenarios were examined, RF and FER were almost identical. However, in the absence of one to three parameters, RF maintained its values of the Youden index (0.94-0.97) and positive predictive value (PPV) (0.98-0.99), whereas PER lost its value (0.54-0.8 and 0.76-0.88, respectively). While the FAR for PER with missing parameters was 0.17-0.39, it was only 0.01-0.02 for RF. When scenarios were examined separately, RF showed clear superiority in almost all combinations of scenarios and numbers of missing parameters. When sensor data are missing, specialist performance worsens with the number of missing parameters, whereas the RF model attains high accuracy and low FAR due to its ability to fuse information from available sensors, compensating for missing parameters.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Alarmas Clínicas / Aprendizaje Automático / Unidades de Cuidados Intensivos Tipo de estudio: Observational_studies / Prognostic_studies Límite: Humans Idioma: En Revista: J Clin Monit Comput Asunto de la revista: INFORMATICA MEDICA / MEDICINA Año: 2020 Tipo del documento: Article País de afiliación: Israel Pais de publicación: Países Bajos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Alarmas Clínicas / Aprendizaje Automático / Unidades de Cuidados Intensivos Tipo de estudio: Observational_studies / Prognostic_studies Límite: Humans Idioma: En Revista: J Clin Monit Comput Asunto de la revista: INFORMATICA MEDICA / MEDICINA Año: 2020 Tipo del documento: Article País de afiliación: Israel Pais de publicación: Países Bajos