Your browser doesn't support javascript.
loading
IVUS images segmentation using spatial fuzzy clustering and hierarchical level set evolution.
Xia, Menghua; Yan, Wenjun; Huang, Yi; Guo, Yi; Zhou, Guohui; Wang, Yuanyuan.
Afiliación
  • Xia M; Department of Electronic Engineering, Fudan University, Shanghai, 200433, China.
  • Yan W; Department of Electronic Engineering, Fudan University, Shanghai, 200433, China.
  • Huang Y; Department of Electronic Engineering, Fudan University, Shanghai, 200433, China.
  • Guo Y; Department of Electronic Engineering, Fudan University, Shanghai, 200433, China; Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Fudan University, Shanghai, 200433, China.
  • Zhou G; Department of Electronic Engineering, Fudan University, Shanghai, 200433, China; Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Fudan University, Shanghai, 200433, China.
  • Wang Y; Department of Electronic Engineering, Fudan University, Shanghai, 200433, China; Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Fudan University, Shanghai, 200433, China. Electronic address: yywang@fudan.edu.cn.
Comput Biol Med ; 109: 207-217, 2019 06.
Article en En | MEDLINE | ID: mdl-31075571
The detection of the lumen and media-adventitia (MA) borders in intravascular ultrasound (IVUS) images is crucial for quantifying plaque burdens. The challenge of the segmentation work mainly roots in various artifacts in the image. Most of the published methods involve the establishment of complex models but do not behave well on images with artifacts. In this study, aiming at automatically delineating borders in IVUS frames acquired by 20 MHz ultrasound probes, we present a fuzzy clustering-initialized hierarchical level set evolution (FC-HLSE) method. A cluster selection strategy based on the spatial fuzzy c-means (FCM) is proposed to generate the initial value and regularization term of the level set evolution (LSE). The contour convergence splits into two LSE steps between which an ingenious contour extraction (consisting of the morphological processing, the seek and linear interpolation, the gradient-based and circular fitting-based refinement) is carried out. We evaluate the proposed methodology on the publicly available 435 images by comparing auto-segmented results with the ground truth. The performance of the method is quantified using the Jaccard measure (JM), the Hausdorff distance (HD), the percentage of area difference (PAD), the linear regression and Bland-Altman analysis. Results reveal that our method can handle images with or without artifacts. The algorithm is able to extract the lumen/MA border with the JM of 0.90/0.89, the HD of 0.31/0.40 mm, the PAD of 0.07/0.08 in average, which is better in some cases compared with several state-of-the-art methods.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Interpretación de Imagen Asistida por Computador / Ultrasonografía Intervencional / Placa Aterosclerótica Límite: Humans Idioma: En Revista: Comput Biol Med Año: 2019 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Interpretación de Imagen Asistida por Computador / Ultrasonografía Intervencional / Placa Aterosclerótica Límite: Humans Idioma: En Revista: Comput Biol Med Año: 2019 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos