Your browser doesn't support javascript.
loading
Mitochondrial respiration and H2O2 emission in saponin-permeabilized murine diaphragm fibers: optimization of fiber separation and comparison to limb muscle.
Hahn, Dongwoo; Kumar, Ravi A; Ryan, Terence E; Ferreira, Leonardo F.
Afiliación
  • Hahn D; Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida.
  • Kumar RA; Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida.
  • Ryan TE; Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida.
  • Ferreira LF; Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida.
Am J Physiol Cell Physiol ; 317(4): C665-C673, 2019 10 01.
Article en En | MEDLINE | ID: mdl-31314583
Diaphragm abnormalities in aging or chronic diseases include impaired mitochondrial respiration and H2O2 emission, which can be measured using saponin-permeabilized muscle fibers. Mouse diaphragm presents a challenge for isolation of fibers due to relatively high abundance of connective tissue in healthy muscle that is exacerbated in disease states. We tested a new approach to process mouse diaphragm for assessment of intact mitochondria respiration and ROS emission in saponin-permeabilized fibers. We used the red gastrocnemius (RG) as "standard" limb muscle. Markers of mitochondrial content were two- to fourfold higher in diaphragm (Dia) than in RG (P < 0.05). Maximal O2 consumption (JO2: pmol·s-1·mg-1) in Dia was higher with glutamate, malate, and succinate (Dia 399 ± 127, RG 148 ± 60; P < 0.05) and palmitoyl-CoA + carnitine (Dia 15 ± 5, RG 7 ± 1; P < 0.05) than in RG, but not different between muscles when JO2 was normalized to citrate synthase activity. Absolute JO2 for Dia was two- to fourfold higher than reported in previous studies. Mitochondrial JH2O2 was higher in Dia than in RG (P < 0.05), but lower in Dia than in RG when JH2O2 was normalized to citrate synthase activity. Our findings are consistent with an optimized diaphragm preparation for assessment of intact mitochondria in permeabilized fiber bundles. The data also suggest that higher mitochondrial content potentially makes the diaphragm more susceptible to "mitochondrial onset" myopathy. Overall, the new approach will facilitate testing and understanding of diaphragm mitochondrial function in mouse models that are used to advance biomedical research and human health.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Saponinas / Diafragma / Peróxido de Hidrógeno / Mitocondrias Musculares Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Am J Physiol Cell Physiol Asunto de la revista: FISIOLOGIA Año: 2019 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Saponinas / Diafragma / Peróxido de Hidrógeno / Mitocondrias Musculares Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Am J Physiol Cell Physiol Asunto de la revista: FISIOLOGIA Año: 2019 Tipo del documento: Article Pais de publicación: Estados Unidos