Your browser doesn't support javascript.
loading
Engineered Graphene Oxide Nanocomposite Capable of Preventing the Evolution of Antimicrobial Resistance.
Zheng, Huizhen; Ji, Zhaoxia; Roy, Kevin R; Gao, Meng; Pan, Yanxia; Cai, Xiaoming; Wang, Liming; Li, Wei; Chang, Chong Hyun; Kaweeteerawat, Chitrada; Chen, Chunying; Xia, Tian; Zhao, Yuliang; Li, Ruibin.
Afiliación
  • Zheng H; State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou , 215123 , Jiangsu , China.
  • Ji Z; Division of Nanomedicine, Department of Medicine, California NanoSystems Institute , University of California , Los Angeles , California 90095 , United States.
  • Roy KR; Living Proof, Inc. , Cambridge , Massachusetts 02142 , United States.
  • Gao M; Department of Genetics, School of Medicine , Stanford University , Palo Alto , California 94304 , United States.
  • Pan Y; State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou , 215123 , Jiangsu , China.
  • Cai X; State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou , 215123 , Jiangsu , China.
  • Wang L; School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases , Soochow University , Suzhou , 215123 , Jiangsu , China.
  • Li W; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , Institute of High Energy Physics, Chinese Academy of Sciences (CAS) , Beijing , 100049 , China.
  • Chang CH; State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou , 215123 , Jiangsu , China.
  • Kaweeteerawat C; Division of Nanomedicine, Department of Medicine, California NanoSystems Institute , University of California , Los Angeles , California 90095 , United States.
  • Chen C; National Nanotechnology Center (NANOTEC), NSTDA Characterization and Testing Center (NCTC), National Science and Technology Development Agency (NSTDA) , Klong Nueng , 12120 , Thailand.
  • Xia T; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China, Chinese Academy of Sciences (CAS) , Beijing , 100190 , China.
  • Zhao Y; Division of Nanomedicine, Department of Medicine, California NanoSystems Institute , University of California , Los Angeles , California 90095 , United States.
  • Li R; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology of China, Chinese Academy of Sciences (CAS) , Beijing , 100190 , China.
ACS Nano ; 13(10): 11488-11499, 2019 10 22.
Article en En | MEDLINE | ID: mdl-31566947
Antimicrobial resistance (AMR) is spreading worldwide and keeps evolving to adapt to antibiotics, causing increasing threats in clinics, which necessitates the exploration of antimicrobial agents for not only killing of resistant cells but also prevention of AMR progression. However, so far, there has been no effective approach. Herein, we designed lanthanum hydroxide and graphene oxide nanocomposites (La@GO) to confer a synergistic bactericidal effect in all tested resistant strains. More importantly, long-term exposure of E. coli (AMR) to subminimum inhibitory concentrations of La@GO does not trigger detectable secondary resistance, while conventional antibiotics and silver nanoparticles lead to a 16- to 64-fold increase in tolerance. The inability of E. coli to evolve resistance to La@GO is likely due to a distinctive extracellular multitarget invasion killing mechanism involving lipid dephosphorylation, lipid peroxidation, and peptidoglycan disruption. Overall, our results highlight La@GO nanocomposites as a promising solution to combating resistant bacteria without inducing the evolution of AMR.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Nanocompuestos / Nanopartículas del Metal / Grafito / Antibacterianos Idioma: En Revista: ACS Nano Año: 2019 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Nanocompuestos / Nanopartículas del Metal / Grafito / Antibacterianos Idioma: En Revista: ACS Nano Año: 2019 Tipo del documento: Article País de afiliación: China Pais de publicación: Estados Unidos