Your browser doesn't support javascript.
loading
Nanocomposites SnO2/SiO2:SiO2 Impact on the Active Centers and Conductivity Mechanism.
Gulevich, Dayana; Rumyantseva, Marina; Marikutsa, Artem; Shatalova, Tatyana; Konstantinova, Elizaveta; Gerasimov, Evgeny; Gaskov, Alexander.
Afiliación
  • Gulevich D; Chemistry Department, Moscow State University, Moscow 119991, Russia. dayana-nsu@mail.ru.
  • Rumyantseva M; Chemistry Department, Moscow State University, Moscow 119991, Russia. roum@inorg.chem.msu.ru.
  • Marikutsa A; Chemistry Department, Moscow State University, Moscow 119991, Russia. artem.marikutsa@gmail.com.
  • Shatalova T; Chemistry Department, Moscow State University, Moscow 119991, Russia. shatalovatb@gmail.com.
  • Konstantinova E; Faculty of Physics, Moscow State University, Moscow 119991, Russia. liza35@mail.ru.
  • Gerasimov E; National Research Center Kurchatov Institute, Moscow 123182, Russia. liza35@mail.ru.
  • Gaskov A; Department of Nano-, Bio-, Information Technology and Cognitive Science, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141701, Russia. liza35@mail.ru.
Materials (Basel) ; 12(21)2019 Nov 04.
Article en En | MEDLINE | ID: mdl-31689938
This paper is focused on the effect of the stabilizing component SiO2 on the type and concentration of active sites in SnO2/SiO2 nanocomposites compared with nanocrystalline SnO2. Previously, we found that SnO2/SiO2 nanocomposites show better sensor characteristics in CO detection (lower detection limit, higher sensor response, and shorter response time) compared to pure SnO2 in humid air conditions. Nanocomposites SnO2/SiO2 synthesized using the hydrothermal method were characterized by low temperature nitrogen adsorption, XRD, energy dispersive X-ray spectroscopy (EDX), thermo-programmed reduction with hydrogen (TPR-H2), IR-, and electron-paramagnetic resonance (EPR)-spectroscopy methods. The electrophysical properties of SnO2 and SnO2/SiO2 nanocomposites were studied depending on the oxygen partial pressure in the temperature range of 200-400 °C. The introduction of SiO2 results in an increase in the concentration of paramagnetic centers Sn3+ and the amount of surface hydroxyl groups and chemisorbed oxygen and leads to a decrease in the negative charge on chemisorbed oxygen species. The temperature dependences of the conductivity of SnO2 and SnO2/SiO2 nanocomposites are linearized in Mott coordinates, which may indicate the contribution of the hopping mechanism with a variable hopping distance over local states.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Materials (Basel) Año: 2019 Tipo del documento: Article País de afiliación: Rusia Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Materials (Basel) Año: 2019 Tipo del documento: Article País de afiliación: Rusia Pais de publicación: Suiza