Your browser doesn't support javascript.
loading
Synthesis of Biogenic Silver Nanoparticles (AgCl-NPs) Using a Pulicaria vulgaris Gaertn. Aerial Part Extract and Their Application as Antibacterial, Antifungal and Antioxidant Agents.
Sharifi-Rad, Majid; Pohl, Pawel.
Afiliación
  • Sharifi-Rad M; Department of Range and Watershed Management, Faculty of Water and Soil, University of Zabol, Zabol 98613-35856, Iran.
  • Pohl P; Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, University of Science and Technology, Wyspianskiego 27, 50370 Wroclaw, Poland.
Nanomaterials (Basel) ; 10(4)2020 Mar 29.
Article en En | MEDLINE | ID: mdl-32235379
In this study, very simple and fast one-step synthesis of biogenic silver chloride nanoparticles (AgCl-NPs) using a Pulicaria vulgaris Gaertn. aerial part extract from an aqueous solution of silver nitrate at room temperature is proposed. The proceedings of the reaction were investigated by UV-Vis spectroscopy. AgCl-NPs were characterized using X-ray diffraction spectroscopy (XRD), Fourier-transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). Antibacterial and antifungal activities of these nanoparticles were evaluated by disk diffusion and microdilution methods against Staphylococcus aureus, Escherichia coli, Candida albicans, and C. glabrata. In addition, the antioxidant activity of the synthesized AgCl-NPs was determined by the DPPH radical scavenging assay. The antimicrobial test confirmed the bactericidal activity of biosynthesized AgCl-NPs against Gram-positive and Gram-negative bacteria. They also exhibited good antifungal activities with minimum inhibitory concentration (MIC) values ranging from 40 to 60 µg/mL against Candida glabrata and Candida albicans, respectively. In addition, biosynthesized AgCl-NPs were established to have remarkable antioxidant activity. All this pointed out that the proposed new biosynthesis approach resulted in production of AgCl-NPs with convenient biomedical applications.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nanomaterials (Basel) Año: 2020 Tipo del documento: Article País de afiliación: Irán Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nanomaterials (Basel) Año: 2020 Tipo del documento: Article País de afiliación: Irán Pais de publicación: Suiza