Your browser doesn't support javascript.
loading
A Bayesian framework for the detection of diffusive heterogeneity.
Cass, Julie A; Williams, C David; Theriot, Julie.
Afiliación
  • Cass JA; Allen Institute for Cell Science, Seattle, WA, United States of America.
  • Williams CD; Allen Institute for Cell Science, Seattle, WA, United States of America.
  • Theriot J; Allen Institute for Cell Science, Seattle, WA, United States of America.
PLoS One ; 15(5): e0221841, 2020.
Article en En | MEDLINE | ID: mdl-32379846
Cells are crowded and spatially heterogeneous, complicating the transport of organelles, proteins and other substrates. One aspect of this complex physical environment, the mobility of passively transported substrates, can be quantitatively characterized by the diffusion coefficient: a descriptor of how rapidly substrates will diffuse in the cell, dependent on their size and effective local viscosity. The spatial dependence of diffusivity is challenging to quantitatively characterize, because temporally and spatially finite observations offer limited information about a spatially varying stochastic process. We present a Bayesian framework that estimates diffusion coefficients from single particle trajectories, and predicts our ability to distinguish differences in diffusion coefficient estimates, conditional on how much they differ and the amount of data collected. This framework is packaged into a public software repository, including a tutorial Jupyter notebook demonstrating implementation of our method for diffusivity estimation, analysis of sources of uncertainty estimation, and visualization of all results. This estimation and uncertainty analysis allows our framework to be used as a guide in experimental design of diffusivity assays.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Células / Modelos Biológicos Tipo de estudio: Diagnostic_studies / Prognostic_studies Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Células / Modelos Biológicos Tipo de estudio: Diagnostic_studies / Prognostic_studies Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Estados Unidos