Your browser doesn't support javascript.
loading
Unique properties of a subset of human pluripotent stem cells with high capacity for self-renewal.
Lau, Kevin X; Mason, Elizabeth A; Kie, Joshua; De Souza, David P; Kloehn, Joachim; Tull, Dedreia; McConville, Malcolm J; Keniry, Andrew; Beck, Tamara; Blewitt, Marnie E; Ritchie, Matthew E; Naik, Shalin H; Zalcenstein, Daniela; Korn, Othmar; Su, Shian; Romero, Irene Gallego; Spruce, Catrina; Baker, Christopher L; McGarr, Tracy C; Wells, Christine A; Pera, Martin F.
Afiliación
  • Lau KX; Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, 3010, Australia.
  • Mason EA; Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, 3010, Australia.
  • Kie J; Centre for Stem Cell Systems, Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, 3010, Australia.
  • De Souza DP; Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, 3010, Australia.
  • Kloehn J; Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, 3052, Australia.
  • Tull D; Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, 3052, Australia.
  • McConville MJ; Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, 3052, Australia.
  • Keniry A; Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, 3052, Australia.
  • Beck T; Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Parkville, Victoria, 3052, Australia.
  • Blewitt ME; Division of Molecular Medicine, The Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria, 3052, Australia.
  • Ritchie ME; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, 3010, Australia.
  • Naik SH; Division of Molecular Medicine, The Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria, 3052, Australia.
  • Zalcenstein D; Division of Molecular Medicine, The Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria, 3052, Australia.
  • Korn O; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, 3010, Australia.
  • Su S; Division of Molecular Medicine, The Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria, 3052, Australia.
  • Romero IG; Division of Molecular Medicine, The Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria, 3052, Australia.
  • Spruce C; Division of Molecular Medicine, The Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria, 3052, Australia.
  • Baker CL; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia.
  • McGarr TC; Division of Molecular Medicine, The Walter and Eliza Hall Institute, 1G Royal Parade, Parkville, Victoria, 3052, Australia.
  • Wells CA; Melbourne Integrative Genomics, School of Biosciences, University of Melbourne, Melbourne, Victoria, 3010, Australia.
  • Pera MF; The Jackson Laboratory, Bar Harbor, ME, 04609, USA.
Nat Commun ; 11(1): 2420, 2020 05 15.
Article en En | MEDLINE | ID: mdl-32415101
ABSTRACT
Archetypal human pluripotent stem cells (hPSC) are widely considered to be equivalent in developmental status to mouse epiblast stem cells, which correspond to pluripotent cells at a late post-implantation stage of embryogenesis. Heterogeneity within hPSC cultures complicates this interspecies comparison. Here we show that a subpopulation of archetypal hPSC enriched for high self-renewal capacity (ESR) has distinct properties relative to the bulk of the population, including a cell cycle with a very low G1 fraction and a metabolomic profile that reflects a combination of oxidative phosphorylation and glycolysis. ESR cells are pluripotent and capable of differentiation into primordial germ cell-like cells. Global DNA methylation levels in the ESR subpopulation are lower than those in mouse epiblast stem cells. Chromatin accessibility analysis revealed a unique set of open chromatin sites in ESR cells. RNA-seq at the subpopulation and single cell levels shows that, unlike mouse epiblast stem cells, the ESR subset of hPSC displays no lineage priming, and that it can be clearly distinguished from gastrulating and extraembryonic cell populations in the primate embryo. ESR hPSC correspond to an earlier stage of post-implantation development than mouse epiblast stem cells.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Células Madre Pluripotentes / Células Madre Embrionarias / Estratos Germinativos Límite: Animals / Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2020 Tipo del documento: Article País de afiliación: Australia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Células Madre Pluripotentes / Células Madre Embrionarias / Estratos Germinativos Límite: Animals / Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2020 Tipo del documento: Article País de afiliación: Australia