Your browser doesn't support javascript.
loading
Self-reported COVID-19 symptoms on Twitter: an analysis and a research resource.
Sarker, Abeed; Lakamana, Sahithi; Hogg-Bremer, Whitney; Xie, Angel; Al-Garadi, Mohammed Ali; Yang, Yuan-Chi.
Afiliación
  • Sarker A; Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, Georgia, USA.
  • Lakamana S; Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, Georgia, USA.
  • Hogg-Bremer W; Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, Georgia, USA.
  • Xie A; Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, Georgia, USA.
  • Al-Garadi MA; Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, Georgia, USA.
  • Yang YC; Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, Georgia, USA.
J Am Med Inform Assoc ; 27(8): 1310-1315, 2020 08 01.
Article en En | MEDLINE | ID: mdl-32620975
OBJECTIVE: To mine Twitter and quantitatively analyze COVID-19 symptoms self-reported by users, compare symptom distributions across studies, and create a symptom lexicon for future research. MATERIALS AND METHODS: We retrieved tweets using COVID-19-related keywords, and performed semiautomatic filtering to curate self-reports of positive-tested users. We extracted COVID-19-related symptoms mentioned by the users, mapped them to standard concept IDs in the Unified Medical Language System, and compared the distributions to those reported in early studies from clinical settings. RESULTS: We identified 203 positive-tested users who reported 1002 symptoms using 668 unique expressions. The most frequently-reported symptoms were fever/pyrexia (66.1%), cough (57.9%), body ache/pain (42.7%), fatigue (42.1%), headache (37.4%), and dyspnea (36.3%) amongst users who reported at least 1 symptom. Mild symptoms, such as anosmia (28.7%) and ageusia (28.1%), were frequently reported on Twitter, but not in clinical studies. CONCLUSION: The spectrum of COVID-19 symptoms identified from Twitter may complement those identified in clinical settings.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neumonía Viral / Infecciones por Coronavirus / Autoinforme / Pandemias / Medios de Comunicación Sociales / Evaluación de Síntomas Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Humans Idioma: En Revista: J Am Med Inform Assoc Asunto de la revista: INFORMATICA MEDICA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Neumonía Viral / Infecciones por Coronavirus / Autoinforme / Pandemias / Medios de Comunicación Sociales / Evaluación de Síntomas Tipo de estudio: Diagnostic_studies / Prognostic_studies Límite: Humans Idioma: En Revista: J Am Med Inform Assoc Asunto de la revista: INFORMATICA MEDICA Año: 2020 Tipo del documento: Article País de afiliación: Estados Unidos Pais de publicación: Reino Unido