Your browser doesn't support javascript.
loading
DNA Origami for Silicon Patterning.
Thomas, Guillaume; Diagne, Cheikh Tidiane; Baillin, Xavier; Chevolleau, Thierry; Charvolin, Thomas; Tiron, Raluca.
Afiliación
  • Thomas G; CEA, LETI, MINATEC Campus, F-38054 Grenoble, France.
  • Diagne CT; CEA, LETI, MINATEC Campus, F-38054 Grenoble, France.
  • Baillin X; CEA, LETI, MINATEC Campus, F-38054 Grenoble, France.
  • Chevolleau T; CNRS/LTM, Université Grenoble Alpes, F-38000 Grenoble, France.
  • Charvolin T; CNRS, LTM, F-38000 Grenoble, France.
  • Tiron R; CEA, LETI, MINATEC Campus, F-38054 Grenoble, France.
ACS Appl Mater Interfaces ; 12(32): 36799-36809, 2020 Aug 12.
Article en En | MEDLINE | ID: mdl-32678567
Desoxyribonucleic acid (DNA) origami architectures are a promising tool for ultimate lithography because of their ability to generate nanostructures with a minimum feature size down to 2 nm. In this paper, we developed a method for silicon (Si) nanopatterning to face up current limitations for high-resolution patterning with standard microelectronic processes. For the first time, a 2 nm-thick 2D DNA origami mask, with specific design composed of three different square holes (with a size of 10 and 20 nm), is used for positive pattern transfer into a Si substrate using a 15 nm-thick silicon dioxide (SiO2) layer as an intermediate hard mask. First, the origami mask is transferred onto the SiO2 underlayer, by an HF vapor-etching process. Then, the Si underlayer is etched using an HBr/O2 plasma. Each hole is transferred in the SiO2 layer and the 20 nm-sized holes are transferred into the final stack (Si). The resulting patterns exhibited a lateral resolution in the range of 20 nm and a depth of 40 nm. Patterns are fully characterized by atomic force microscopy, scanning electron microscopy, focused ion beam-transmission electron microscopy, and ellipsometry measurements.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Silicio / ADN / Dióxido de Silicio / Nanoestructuras Tipo de estudio: Clinical_trials Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2020 Tipo del documento: Article País de afiliación: Francia Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Silicio / ADN / Dióxido de Silicio / Nanoestructuras Tipo de estudio: Clinical_trials Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2020 Tipo del documento: Article País de afiliación: Francia Pais de publicación: Estados Unidos