Your browser doesn't support javascript.
loading
Liver cancer prediction in a viral hepatitis cohort: A deep learning approach.
Phan, Dinh-Van; Chan, Chien-Lung; Li, Ai-Hsien Adams; Chien, Ting-Ying; Nguyen, Van-Chuc.
Afiliación
  • Phan DV; Department of Information Management, Yuan Ze University, Taoyuan, Taiwan.
  • Chan CL; University of Economics, The University of Danang, Danang, Vietnam.
  • Li AA; Teaching and Research Team for Business Intelligence, University of Economics, The University of Danang, Danang, Vietnam.
  • Chien TY; Department of Information Management, Yuan Ze University, Taoyuan, Taiwan.
  • Nguyen VC; Innovation Center for Big Data and Digital Convergence, Yuan Ze University, Taoyuan, Taiwan.
Int J Cancer ; 147(10): 2871-2878, 2020 11 15.
Article en En | MEDLINE | ID: mdl-32761609
Viral hepatitis is the primary cause of liver diseases, among which liver cancer is the leading cause of death from cancer. However, this cancer is often diagnosed in the later stages, which makes treatment difficult or even impossible. This study applied deep learning (DL) models for the early prediction of liver cancer in a hepatitis cohort. In this study, we surveyed 1 million random samples from the National Health Insurance Research Database (NHIRD) to analyze viral hepatitis patients from 2002 to 2010. Then, we used DL models to predict liver cancer cases based on the history of diseases of the hepatitis cohort. Our results revealed the annual prevalence of hepatitis in Taiwan increased from 2002 to 2010, with an average annual percentage change (AAPC) of 5.8% (95% CI: 4.2-7.4). However, young people (aged 16-30 years) exhibited a decreasing trend, with an AAPC of -5.6 (95% CI: -8.1 to -2.9). The results of applying DL models showed that the convolution neural network (CNN) model yielded the best performance in terms of predicting liver cancer cases, with an accuracy of 0.980 (AUC: 0.886). In conclusion, this study showed an increasing trend in the annual prevalence of hepatitis, but a decreasing trend in young people from 2002 to 2010 in Taiwan. The CNN model may be applied to predict liver cancer in a hepatitis cohort with high accuracy.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Hepatitis Viral Humana / Neoplasias Hepáticas Tipo de estudio: Observational_studies / Prevalence_studies / Prognostic_studies / Risk_factors_studies Límite: Adolescent / Adult / Child / Child, preschool / Female / Humans / Infant / Male / Middle aged / Newborn País/Región como asunto: Asia Idioma: En Revista: Int J Cancer Año: 2020 Tipo del documento: Article País de afiliación: Taiwán Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Hepatitis Viral Humana / Neoplasias Hepáticas Tipo de estudio: Observational_studies / Prevalence_studies / Prognostic_studies / Risk_factors_studies Límite: Adolescent / Adult / Child / Child, preschool / Female / Humans / Infant / Male / Middle aged / Newborn País/Región como asunto: Asia Idioma: En Revista: Int J Cancer Año: 2020 Tipo del documento: Article País de afiliación: Taiwán Pais de publicación: Estados Unidos