Your browser doesn't support javascript.
loading
Global maps of travel time to healthcare facilities.
Weiss, D J; Nelson, A; Vargas-Ruiz, C A; Gligoric, K; Bavadekar, S; Gabrilovich, E; Bertozzi-Villa, A; Rozier, J; Gibson, H S; Shekel, T; Kamath, C; Lieber, A; Schulman, K; Shao, Y; Qarkaxhija, V; Nandi, A K; Keddie, S H; Rumisha, S; Amratia, P; Arambepola, R; Chestnutt, E G; Millar, J J; Symons, T L; Cameron, E; Battle, K E; Bhatt, S; Gething, P W.
Afiliación
  • Weiss DJ; Malaria Atlas Project, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK. daniel.weiss@telethonkids.org.au.
  • Nelson A; Telethon Kids Institute, Perth Children's Hospital, Nedlands, Western Australia, Australia. daniel.weiss@telethonkids.org.au.
  • Vargas-Ruiz CA; Curtin University, Bentley, Western Australia, Australia. daniel.weiss@telethonkids.org.au.
  • Gligoric K; Department of Natural Resources, ITC Faculty of Geo-Information Science and Earth Observation, University of Twente, Enschede, the Netherlands.
  • Bavadekar S; Malaria Atlas Project, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
  • Gabrilovich E; Swiss Federal Institute of Technology Lausanne (École Polytechnique Fédérale de Lausanne), Lausanne, Switzerland.
  • Bertozzi-Villa A; Google, Mountain View, CA, USA.
  • Rozier J; Google, Mountain View, CA, USA.
  • Gibson HS; Malaria Atlas Project, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
  • Shekel T; Institute for Disease Modeling, Bellevue, WA, USA.
  • Kamath C; Telethon Kids Institute, Perth Children's Hospital, Nedlands, Western Australia, Australia.
  • Lieber A; Malaria Atlas Project, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
  • Schulman K; Google, Mountain View, CA, USA.
  • Shao Y; Google, Mountain View, CA, USA.
  • Qarkaxhija V; Google, Mountain View, CA, USA.
  • Nandi AK; Stanford University, Palo Alto, CA, USA.
  • Keddie SH; Department of Geography, Virginia Polytechnic Institute and State University , Blacksburg, VA, USA.
  • Rumisha S; Vaccitech, The Oxford Science Park, Oxford, UK.
  • Amratia P; Malaria Atlas Project, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
  • Arambepola R; Telethon Kids Institute, Perth Children's Hospital, Nedlands, Western Australia, Australia.
  • Chestnutt EG; Malaria Atlas Project, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
  • Millar JJ; Malaria Atlas Project, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
  • Symons TL; Malaria Atlas Project, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
  • Cameron E; Malaria Atlas Project, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
  • Battle KE; Malaria Atlas Project, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
  • Bhatt S; Malaria Atlas Project, Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
  • Gething PW; Telethon Kids Institute, Perth Children's Hospital, Nedlands, Western Australia, Australia.
Nat Med ; 26(12): 1835-1838, 2020 12.
Article en En | MEDLINE | ID: mdl-32989313
Access to healthcare is a requirement for human well-being that is constrained, in part, by the allocation of healthcare resources relative to the geographically dispersed human population1-3. Quantifying access to care globally is challenging due to the absence of a comprehensive database of healthcare facilities. We harness major data collection efforts underway by OpenStreetMap, Google Maps and academic researchers to compile the most complete collection of facility locations to date. Leveraging the geographically variable strengths of our facility datasets, we use an established methodology4 to characterize travel time to healthcare facilities in unprecedented detail. We produce maps of travel time with and without access to motorized transport, thus characterizing travel time to healthcare for populations distributed across the wealth spectrum. We find that just 8.9% of the global population (646 million people) cannot reach healthcare within one hour if they have access to motorized transport, and that 43.3% (3.16 billion people) cannot reach a healthcare facility by foot within one hour. Our maps highlight an additional vulnerability faced by poorer individuals in remote areas and can help to estimate whether individuals will seek healthcare when it is needed, as well as providing an evidence base for efficiently distributing limited healthcare and transportation resources to underserved populations both now and in the future.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Aceptación de la Atención de Salud / Accesibilidad a los Servicios de Salud Aspecto: Determinantes_sociais_saude Límite: Humans Idioma: En Revista: Nat Med Asunto de la revista: BIOLOGIA MOLECULAR / MEDICINA Año: 2020 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Aceptación de la Atención de Salud / Accesibilidad a los Servicios de Salud Aspecto: Determinantes_sociais_saude Límite: Humans Idioma: En Revista: Nat Med Asunto de la revista: BIOLOGIA MOLECULAR / MEDICINA Año: 2020 Tipo del documento: Article Pais de publicación: Estados Unidos