Your browser doesn't support javascript.
loading
MultiBUGS: A Parallel Implementation of the BUGS Modelling Framework for Faster Bayesian Inference.
Goudie, Robert J B; Turner, Rebecca M; De Angelis, Daniela; Thomas, Andrew.
Afiliación
  • Goudie RJB; MRC Biostatistics Unit University of Cambridge.
  • Turner RM; MRC Clinical Trials Unit University College London.
  • De Angelis D; MRC Biostatistics Unit University of Cambridge.
  • Thomas A; MRC Biostatistics Unit University of Cambridge.
J Stat Softw ; 952020 Oct 07.
Article en En | MEDLINE | ID: mdl-33071678
MultiBUGS is a new version of the general-purpose Bayesian modelling software BUGS that implements a generic algorithm for parallelising Markov chain Monte Carlo (MCMC) algorithms to speed up posterior inference of Bayesian models. The algorithm parallelises evaluation of the product-form likelihoods formed when a parameter has many children in the directed acyclic graph (DAG) representation; and parallelises sampling of conditionally-independent sets of parameters. A heuristic algorithm is used to decide which approach to use for each parameter and to apportion computation across computational cores. This enables MultiBUGS to automatically parallelise the broad range of statistical models that can be fitted using BUGS-language software, making the dramatic speed-ups of modern multi-core computing accessible to applied statisticians, without requiring any experience of parallel programming. We demonstrate the use of MultiBUGS on simulated data designed to mimic a hierarchical e-health linked-data study of methadone prescriptions including 425,112 observations and 20,426 random effects. Posterior inference for the e-health model takes several hours in existing software, but MultiBUGS can perform inference in only 28 minutes using 48 computational cores.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Risk_factors_studies Idioma: En Revista: J Stat Softw Año: 2020 Tipo del documento: Article Pais de publicación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Risk_factors_studies Idioma: En Revista: J Stat Softw Año: 2020 Tipo del documento: Article Pais de publicación: Estados Unidos