Your browser doesn't support javascript.
loading
Performance of Glass Wool Fibers in Asphalt Concrete Mixtures.
Mrema, Agathon Honest; Noh, Si-Hyeon; Kwon, Oh-Sun; Lee, Jae-Jun.
Afiliación
  • Mrema AH; Department of Civil Engineering, Jeonbuk National University, Jeonju-si, Jeollabuk-do 54896, Korea.
  • Noh SH; Department of Civil Engineering, Jeonbuk National University, Jeonju-si, Jeollabuk-do 54896, Korea.
  • Kwon OS; Principal Researcher, Korea Expressway Corporation Research Center, 208-96 Dongbu-daero 922beon-gil, Dongtan-myeon, Hwaseong-si, Gyeonggi-do 39660, Korea.
  • Lee JJ; Department of Civil Engineering, Jeonbuk National University, Jeonju-si, Jeollabuk-do 54896, Korea.
Materials (Basel) ; 13(21)2020 Oct 22.
Article en En | MEDLINE | ID: mdl-33105587
Nowadays, in order to improve asphalt pavement performance and durability and reduce environmental pollution caused by hydrocarbon materials, many researchers are studying different ways of modifying asphalt concrete (AC) and finding alternative paving materials to extend the service life of pavements. One of the successful materials used in the modification of AC is fibers. Different types of fibers have been reinforced in AC mixtures and improvements have been observed. This research studies the performance of glass wool fibers reinforced in a dense-graded asphalt mixture. Generally, glass fibers are known to have excellent mechanical properties such as high tensile modulus, 100% elastic recovery and a very high tolerance to heat. Glass wool fibers are commonly used as a thermal insulation material. In this research, to evaluate the performance of glass wool fibers in AC, laboratory tests, the Marshall mix design test, indirect tensile strength (IDT), tensile strength ratio (TSR) and the Kim test were conducted to determine a proper mix design, tensile properties, moisture susceptibility, rutting and fatigue behaviors. Results show that the addition of glass wool fibers does affect the properties of AC mixtures. The use of glass wool fibers shows a positive consistence result, in which it improved the moisture susceptibility and rutting resistance of the AC. Additionally, results show that the addition of fiber increased tensile strength and toughness which indicates that fibers have a potential to resist distresses that occur on a surface of the road as a result of heavy traffic loading. The overall results show that the addition of glass wool fibers in AC mixtures is beneficial in improving properties of AC pavements.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Materials (Basel) Año: 2020 Tipo del documento: Article Pais de publicación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Materials (Basel) Año: 2020 Tipo del documento: Article Pais de publicación: Suiza